ECE8813 Statistical Natural Language Processing

Lectures 9 & 10: N-gram Estimation

Chin-Hui Lee
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332, USA
chl@ece.gatech.edu

Statistical NLP

- Some computational linguistics examples
 - Part-of-speech tagging for word sense disambiguation
 - Probabilistic parsing for sentence structures
 - Message understanding using semantics models
 - Statistical machine translation
 - Statistical transliteration
- Central to all problems in language modeling (LM)
 - Modeling of linguistic units and production rules
 - Discrete r. v. with very sparse observations
 - Language structure is crucial for efficient modeling

Probabilities of Word Sequences

Language modeling (LM): Markov approximation

Given a sequence of word: $W = [w_1, ..., w_{|W|}]$, what is P(W)?

$$\begin{split} &P(W) = P(w_1)P(w_2 \mid w_1) \cdots P(w_{|W|} \mid w_1, \dots, w_{|W|-1}) \quad n - gram \\ &\approx P(w_1)P(w_2 \mid w_1) \cdots P(w_n \mid w_1, \dots, w_{n-1}) \prod_{k=n}^{|W|} P(w_k \mid w_{k-1}, w_{k-2}, \dots, w_{k-n+1}) \\ &= P(w_1)P(w_2 \mid w_1) \prod_{k=n}^{|W|} P(w_k \mid w_{k-1}, w_{k-2}) \quad \text{trigram approximation} \end{split}$$

 Many will argue that this is a poor assumption, and would not be able to handle nested linguistic structures, but the higher order n-gram are difficulty to estimate so that a trigram approximation has been a very effective one that follows Shannon's channel modeling paradigm

Problem Mapping of POS Tagging

- Finite state network (FSN) representation
 - State (node) space: the set of tags
 - Arc: tag transition (probabilities)
 - State output: tag-specific word probabilities
 - State-sequence: tag sequence
- An example:

The representative put chairs on the table.

Statistical POS Tagging

Bigram tag language model approximation

$$P(T) = P(t_1^Q) \approx \prod_{q=1}^Q P(t_q \mid t_{q-1}) \quad P(t_1 \mid t_0) = 1$$

Localized tag-specific language model

$$P(W \mid T) = P(w_1^{Q} \mid t_1^{Q}) \approx \prod_{q=1}^{Q} P(w_q \mid t_1^n) \approx \prod_{q=1}^{Q} P(w_q \mid t_q)$$

Overall approximation

$$\hat{t}_{1}^{\mathcal{Q}} = \operatorname{arg\,max}_{T} P(W \mid T) P(T) \approx \operatorname{arg\,max}_{t_{1}^{\mathcal{Q}}} \prod_{q=1}^{\mathcal{Q}} P(w_{q} \mid t_{q}) P(t_{q} \mid t_{q-1})$$

Problem Mapping for Text Understanding

- Finite state network (FSN) representation
 - State (node) space: the set of concepts
 - Arc: concept transition (probabilities)
 - State output: concept-specific word sequences
 - State-sequence: concept sequence (meaning expressed in sequence of semantic attributes)
- An example:

I want to flv to Boston from Dallas Friday noon on coach.

Statistical Concept Decoding

Bigram concept language model approximation

$$P(C) = P(c_1^Q) \approx \prod_{q=1}^Q P(c_q \mid c_{q-1}) \quad P(c_1 \mid c_0) = 1$$

Localized concept-specific bigram or trigram LM

$$P(W \mid C) = P(w_1^{Q} \mid c_1^{Q}) \approx \prod_{q=1}^{Q} P(w_1^{Q} \mid c_q) \approx \prod_{q=1}^{Q} P(w_{q-2}^{q} \mid c_q)$$

Overall approximation

$$\hat{c}_{1}^{Q} = \arg\max_{C} P(W \mid C) P(C) \approx \arg\max_{c_{1}^{Q}} \prod_{q=1}^{Q} P(w_{q-2}^{q} \mid c_{q}) P(c_{q} \mid c_{q-1})$$

Some Issues before Moving on

- Under-sampling problems already in unigram
 - Too little data to estimate too many parameters
 - But we can not ignore unobserved events

$$U_{1}(x,V) = \begin{cases} f_{x} & 1 \le x \le V \\ \varepsilon_{1} & \text{otherwise} \end{cases} \Omega_{x} = \{w_{1}, \dots, w_{V}, \dots\}$$

- For n greater, more estimation & storage problem
 - When V=60K, we need VxVxV=256 trillion trigrams
 - Serious underflow problem in computing
 - Hierarchical data structure is needed, but what and how?
- Recall multinomial distribution, what's the MLE?
 - Count the number of occurrences for unit events
 - Count the number of co-occurrences for joint/conditional events
- Are there better ways to count discrete events?

Text Corpora for N-gram Studies

- Existing: WSJ, Brown corpus, Treebank, AP wire, etc.
- Ongoing: million-book project (Internet Archive)
- For learning purpose: Project Gutenberg (small & doable): http://www.gutenberg.org/wiki/Main_page
- Jane Austen's novels (download on-line, 40GB) http://www2.hn.psu.edu/faculty/jmanis/j-austen.htm
 - Used in the Manning's textbook for illustration purposes
 - Training set: Emma, Mansfield Park, Northanger Abbey, Pride and Prejudice, and Sense and Sensibility
 - Testing set: Persuasion
 - N=617,091 single-words of text, V=14585 distinct words

Pre-processing: Clean-up and Normalization

- Handling of punctuations? capitalized words? Other?
- Bracketing of group of words (for easier modeling)
- 'Non-words': sentence beginning and ending marks,
 <UNK>
- Numerals: 12 vs. twelve
- Capitalized word can be used for some purposes
- What's needed is usually application-dependent
- Sometimes tokenization is important
 - e.g. no space between Chinese words, i.e. multiple word segmentations, many single-character words

Bernoulli Trials and Applications

Binary Events:

$$P(A) = P("success") = p, P(\overline{A}) = P("failure") = q = 1 - p$$

- How about k successes in n independent trials?
 - How many such possibilities: binomial coefficient

$$_{n}C_{k} = \binom{n}{k} = \frac{1}{k!}[n*(n-1)\cdots*(n-k+1)] = \frac{n!}{k!(n-k)!}$$

$$p_n(k) = P(k \text{ successes in } n \text{ trials}) = \binom{n}{k} p^k q^{(n-k)}$$

Extension to Multinomial Distribution

Multinomial Distribution: e.g. animal population

$$M(r_1, \dots, r_M; N; p_1, \dots, p_M) = \frac{N!}{r_1! \cdots r_M!} \prod_{i=1}^{M} p_i^{r_i} \quad 0 \le r_i \quad \sum_{i=1}^{M} r_i = N$$

- n-gram usage:
- $1.r_i:i-$ th event for observing a specific n gram, $e_i=(w_1,\ldots,w_n)$
- 2. N_n : total number of n-gram events observed in the corpus: $\sum_i C(e_i) = N_n$
- 3. Total number of distinct events of interests: $M = |V|^n$
- 4. Conditional event $(W | w_1, ..., w_{n-1})$ is a unigram distribution over all W
- 5. Each unigram r.v. follows a multinomial distribution
- 6. Issue with unobserved events and spare training data

Observing N-Gram Estimates

- Looking into Table 6.3 for examples from Austen
- Unigram: Zipf's Law again
 - "inferior" is less common than "to"
- Bigram: remember collocation
 - P("to"|"inferior")=0.212, a very high combination
- Trigram: many unseen events
- 4-gram: even more unseen events

Generalization Issues

- Set aside some data for cross-validation but there is only very little training data
 - Too many parameters: over-fitting model will get good scores on training data but usually does not generalize to unseen testing data
 - Regularization: adding penalty terms to penalize too good over-fitting of training data
 - Dividing training set into initial training and held-out set or development set
 - Always testing models on unseen evaluation sets
 - Sometimes imposing the cross-validation strategy

Statistical Estimators

- Example:
 - Corpus: five Jane Austen novels
 - N = 617,091 words, V = 14,585 unique words
 - Task: predict the next word of the trigram "inferior to ____"
 - from test data, Persuasion: "[In person, she was] inferior to both [sisters.]"
- Given the observed training data ...
- How do you develop a model (probability distribution) to predict future events?

The Perfect Language Model

- Sequence of word forms
- Notation: $W = (w_1, w_2, w_3, ..., w_d)$
- The big (modeling) question is "what is p(W)"?
- Well, we know (Bayes/chain rule):
 - $-p(W) = p(w_1, w_2, w_3, ..., w_d) = p(w_1) \times p(w_2|w_1) \times p(w_3|w_1, w_2) \cdot ... \cdot p(w_d|w_1, w_2, ..., w_{d-1})$
- Not practical (even for short W there are still too many parameters)

Markov Chain

- Unlimited memory (cf. previous foil):
 - for w_i , we know <u>all</u> its predecessors $w_1, w_2, w_3, ..., w_{i-1}$
- Limited memory:
 - we disregard predecessors that are "too old"
 - remember only k previous words: $w_{i-k}, w_{i-k+1}, \dots, w_{i-1}$
 - called "kth order Markov approximation"
- Stationary character (no change over time):

$$- p(W) = \prod_{i=1..d} p(w_i | w_{i-n+1}, w_{i-n+2}, ..., w_{i-1}) d = |W|$$

N-gram Language Models

(n-1)th order Markov approximation gives n-gram LM:

$$p(W) = \prod_{i=1..d} p(w_i|w_{i-n+1}, w_{i-n+2}, ..., w_{i-1})$$

• In particular (assume vocabulary size |V| = 20k):

_	0-gram : uniform model	p(w) = 1/ V	1 parameter
_	1-gram : unigram model	p(w)	2x10 ⁴ parameters
_	2-gram : bigram model	$p(w_i w_{i-1})$	4x10 ⁸ parameters
_	3-gram : trigram mode	$p(w_i w_{i-2},w_{i-1})$	8x10 ¹² parameters
_	4-gram: tetragram model	$p(W_i W_{i,2},W_{i,2},W_{i,4})$	1.6x10 ¹⁷ parameters

Reliability vs. Discrimination

- "large green ____"
 tree? mountain? frog? car?
- "swallowed the large green _____"pill? tidbit?
- Larger n: more information about the context of the specific instance (greater discrimination)
- Smaller n: more instances in training data, better statistical estimates (more reliability)

LM Observations

- How large n?
 - Zero is enough (theoretically)
 - But anyway: as much as possible (as close to "perfect" model as possible)
 - Empirically: <u>3</u>
 - parameter estimation? (reliability, data availability, storage space, ...)
 - 4 is too much: |V| = 60k gives 1.296×10^{19} parameters
 - but: 6-7 would be (almost) ideal (having enough data)
 - Reliability decreases with increase in detail (need compromise)
- For now, word forms only

Parameter Estimation

- Parameter: numerical value needed to compute p(w|h)
- From data (how else?)
- Data preparation:
 - get rid of formatting etc. ("text cleaning")
 - define words (separate but include punctuation, call it "word", unless speech)
 - define sentence boundaries (insert "words" <s> and </s>)
 - letter case: keep, discard, or be smart:
 - name recognition
 - number type identification
 - numbers: keep, replace by <num>, or be smart (form ~ pronunciation)

Maximum Likelihood Estimation of N-grams

Properties of *n*-grams

$$P(w_n \mid w_1, ..., w_{n-1}) = \frac{P(w_1, ..., w_{n-1}, w_n)}{P(w_1, ..., w_{n-1})},$$

$$\sum_{w_n \in V} P(w_n \mid w_1, ..., w_{n-1}) = 1,$$

$$\sum_{w_n \in V} C(e_i) = N_n \quad e_i : i \text{ - th event}$$

MLE of Multinomial Distribution Parameters

$$P_{MLE}(w_1, \dots, w_{n-1}, w_n) = \frac{C(w_1, \dots, w_{n-1}, w_n)}{N_n},$$

$$P_{MLE}(w_n \mid w_1, \dots, w_{n-1}) = \frac{C(w_1, \dots, w_{n-1}, w_n)}{C(w_1, \dots, w_{n-1})},$$

$$\sum_{w \in V} C(w_1, \dots, w_{n-1}, W) = C(w_1, \dots, w_{n-1})$$

Maximum Likelihood Estimate

- MLE: Relative Frequency...
 - ...best predicts the data at hand (the "training data")
- Trigrams from Training Data T:
 - count sequences of three words in T: $C_3(w_{i-2}, w_{i-1}, w_i)$
 - count sequences of two words in $T: C_2(w_{i-2}, w_{i-1})$:

$$P_{\text{MLE}}(w_i|w_{i-2},w_{i-1}) = C_3(w_{i-2},w_{i-1},w_i) / C_2(w_{i-2},w_{i-1})$$

Character Language Model

Use individual characters instead of words:

$$p(W) = \prod_{i=1..d} p(c_i|c_{i-n+1}, c_{i-n+2}, ..., c_{i-1})$$

- Same formulas and methods
- Might consider 4-grams, 5-grams or even more
- Good for cross-language comparisons
- Transform cross-entropy between letter- and word-based models:
 - $H_S(p_c) = H_S(p_w)$ / avg. # of characters per word in S

LM: An Example

Training data: <s₀> <s> He can buy you the can of soda </s>

Unigram: (8 words in vocabulary)

$$p_1(He) = p_1(buy) = p_1(you) = p_1(the) = p_1(of) = p_1(soda) =$$

.125 $p_1(can) = .25$

– Bigram:

$$p_2(\text{He}|<\text{s>}) = 1$$
, $p_2(\text{can}|\text{He}) = 1$, $p_2(\text{buy}|\text{can}) = .5$, $p_2(\text{of}|\text{can}) = .5$, $p_2(\text{you}|\text{buy}) = 1$,...

– Trigram:

$$p_3(\text{He}|<\text{s}_0>,<\text{s}>) = 1, \ p_3(\text{can}|<\text{s}>,\text{He}) = 1, \ p_3(\text{buy}|\text{He},\text{can}) = 1, \ p_3(\text{of}|\text{the},\text{can}) = 1, ...p_3(|\text{of},\text{soda}) = 1.$$

- Entropy: $H(p_1) = 2.75$, $H(p_2) = 1$, $H(p_3) = 0$

LM: an Example (The Problem)

Cross-entropy:

 $S = \langle s_0 \rangle \langle s \rangle$ It was the greatest buy of all $\langle s \rangle$

- Even H_S(p₁) fails because:
 - all unigrams but p₁(the), p₁(buy), and p₁(of) are 0
 - all bigram probabilities are 0
 - all trigram probabilities are 0
- Need to make all "theoretically possible" probabilities non-zero

LM: Another Example

- Training data S: |V| =11 (not counting <s> and </s>)
 <s> John read Moby Dick </s>
 - <s> Mary read a different book </s>
 - <s> She read a book by Cher </s>
- Bigram estimates:

```
P(She \mid <s>) = C(<s> She)/ Sum_w C(<s> w) = 1/3
```

 $P(read | She) = C(She read) / Sum_w C(She w) = 1$

P (Moby | read) = C(read Moby)/ Sum_w C(read w) = 1/3

 $P (Dick \mid Moby) = C(Moby Dick) / Sum_w C(Moby w) = 1$

$$P(| Dick) = C(Dick) / Sum_w C(Dick w) = 1$$

p(She read Moby Dick) =

p(She | ~~)
$$\times$$
 p(read | She) \times p(Moby | read) \times p(Dick | Moby) \times p(~~ | Dick) = $1/3 \times 1 \times 1/3 \times 1 \times 1 = 1/9$

Training Corpus Instances: "inferior to_

Actual Probability Distribution

Maximum Likelihood Estimate

Comparison

The Zero Cell Problem

- "Raw" n-gram language model estimate:
 - Necessarily, there will be some zeros
 - Often trigram model gives 2.16x10¹⁴ parameters, and the required data ~ 10⁹ words
 - Which are true zeros?
 - optimal situation: even the least frequent trigram would be seen several times, in order to distinguish it's probability vs. other trigrams (hapax legomena)
 - optimal situation cannot happen, unfortunately (question: how much data would we need?)
 - We don't know; hence, we eliminate them
- Different kinds of zeros: p(w|h) = 0, p(w) = 0

Need Nonzero Probabilities?

- Avoid infinite Cross Entropy:
 - happens when an event is found in the test data which has not been seen in training data
- Make the system more robust
 - low count estimates:
 - they typically happen for "detailed" but relatively rare appearances
 - high count estimates: reliable but less "detailed"

Eliminating Zero Probability: Smoothing

- Get new p'(w) (same W): almost p(w) except for eliminating zeros
- Discount w for some p(w) > 0: new p'(w) < p(w)Sum _{discounted} (p(w) - p'(w)) = D
- Distribute D to all w; p(w) = 0: new p'(w) > p(w)
 possibly also to other w with low p(w)
- For some w (possibly): p'(w) = p(w)
- Make sure Sum_W p'(w) = 1
- There are many ways of <u>smoothing</u>

Improving MLE by Discounting

- Handle out-of-vocabulary (OOV) classes
 - Not seen in training: count = 0 or 1 (<UNK>)
- Laplace Law (adding one): more for unseen events
 - Bayesian estimates assuming a uniform prior
 - 99.97% probability mass given to unseen bigrams (Table 6.4)

$$p_{\text{Lap}} = [C(w_1, ..., w_n) + 1]/[C(\text{total}) + M]$$

• Lidstone's Law $p_{\text{Lid}} = [C(w_1, ..., w_n) + \lambda]/[C(\text{total}) + M\lambda], \lambda < 1$ $= \mu * \frac{C(w_1, ..., w_n)}{C(\text{total})} + (1 - \mu) \frac{1}{M}, \mu = \frac{C(\text{total})}{C(\text{total}) + M\lambda}$

Jeffrey-Perks Law: Expected Likelihood Estimation

$$\lambda = 0.5$$
 and $\mu = \frac{C(\text{total})}{C(\text{total}) + 0.5M}$

Laplace's Law: Smoothing by Adding 1

Laplace's Law:

- $-P_{LAP}(w_1,...,w_n)=(C(w_1,...,w_n)+1)/(N+B)$, where $C(w_1,...,w_n)$ is the frequency of n-gram $w_1,...,w_n$, N is the number of training instances, and B is the number of bins training instances are divided into (vocabulary size)
- Problem if B > C(W) (can be the case; even >> C(W))
- $-P_{LAP}(w \mid h) = (C(h, w) + 1) / (C(h) + B)$
- The idea is to give a little bit of the probability space to unseen events

Add 1 Smoothing Example

p_{MLE}(Cher read Moby Dick) =

- p(Cher | <s>) \times p(read | Cher) \times p(Moby | read) \times p(Dick | Moby) \times p(</s> | Dick) = 0 \times 0 \times 1/3 \times 1 \times 1 = 0
- $p(Cher \mid \langle s \rangle) = (1 + C(\langle s \rangle Cher))/(11 + C(\langle s \rangle)) = (1 + 0) / (11 + 3)$ = 1/14 = .0714
- p(read | Cher) = (1 + C(Cher read))/(11 + C(Cher)) = <math>(1 + 0) / (11 + 1) = 1/12 = .0833
- p(Moby | read) = (1 + C(read Moby))/(11 + C(read)) = <math>(1 + 1) / (11 + 3) = 2/14 = .1429
- P(Dick | Moby) = (1 + C(Moby Dick))/(11 + C(Moby)) = (1 + 1) / (11 + 1) = 2/12 = .1667
- P(</s> | Dick) = (1 + C(Dick </s>))/(11 + C<s>) = (1 + 1) / (11 + 3) = 2/14 = .1429
- p'(Cher read Moby Dick) = p(Cher | <s>) \times p(read | Cher) \times p(Moby | read) \times p(Dick | Moby) \times p(</s $> | Dick) = 1/14<math>\times$ 1/12 \times 2/14 \times 2/12 \times 2/14 = 2.02e⁻⁵

Laplace's Law (Rriginal)

Laplace's Law (Adding One)

Objections to Laplace's Law

- For NLP applications that are very sparse, Laplace's Law actually gives far too much of the probability space to unseen events
- Worse at predicting the actual probabilities of bigrams with zero counts than other methods
- Count variances are actually greater than the MLE

Lidstone's Law

$$P_{Lid} (w_1 \cdots w_n) = \frac{C(w_1 \cdots w_n) + \lambda}{N + B\lambda}$$

P = probability of specific n-gram

C = count of that n-gram in training data

N = total n-grams in training data

B = number of "bins" (possible n-grams)

 λ = small positive number

MLE: $\lambda = 0$

LaPlace's Law: $\lambda = 1$

Jeffreys-Perks Law: $\lambda = \frac{1}{2}$

 $P_{Lid}(w \mid h) = (C(h, w) + \lambda) / (C(h) + B \lambda)$

Jeffreys-Perks Law

Objections to Lidstone's Law

- Need an a priori way to determine λ
- Predicts all unseen events to be equally likely
- Gives probability estimates linear in the M.L.E. frequency

Lidstone's Law with $\lambda = .5$

```
p_{MIF}(Cher read Moby Dick) =
                                                             p(Cher | <s>) \times p(read | Cher) \times p(Moby | read) \times p(Dick |
                                                                                  Moby) \times p(</s> | Dick) = 0 \times 0 \times 1/3 \times 1 \times 1 = 0
                                                    p(Cher \mid \langle s \rangle) = (.5 + C(\langle s \rangle Cher))/(.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5*11 + C(\langle s \rangle)) = (.5 + 0) / (.5 + 0) / (.5*11 + C
                                                                                  3) = .5/8.5 = .0588
                                                   p(read | Cher) = (.5 + C(Cher read))/(.5*11 + C(Cher)) = (.5 + 0) / (.5*
                                                                                   11 + 1) = .5/6.5 = .0769
                                                   p(Moby \mid read) = (.5 + C(read Moby))/(.5*11 + C(read)) = (.5 + 1) / (.5*
                                                                                   11 + 3) = 1.5/8.5 = .1765
                                                    P(Dick \mid Moby) = (.5 + C(Moby Dick))/(.5*11 + C(Moby)) = (.5 + 1) / (.5*11 + C(Moby)) = (.5
                                                                                   11 + 1) = 1.5/6.5 = .2308
                                                    P(</s> | Dick) = (.5 + C(Dick </s>))/(.5* 11 + C<s>) = (.5 + 1) / (.5* 11 + C<s>)
                                                                                 3) = 1.5/8.5 = .1765
   p'(Cher read Moby Dick) =
                                                            p(Cher \mid \langle s \rangle) \times p(read \mid Cher) \times p(Moby \mid read) \times p(Dick \mid Moby) \times p(Cher \mid \langle s \rangle) \times p(read \mid Cher) \times p(Moby \mid read) \times p(Dick \mid Moby) \times p(Cher \mid \langle s \rangle) \times p(read \mid Cher) \times p(Moby \mid read) \times p(Dick \mid Moby) \times p(Cher \mid \langle s \rangle) \times p(read \mid Cher) \times p(Moby \mid read) \times p(Dick \mid Moby) \times p(Dick \mid Moby) \times p(Cher \mid \langle s \rangle) \times p(Che
                                                                                   p(</s> | Dick) = .5/8.5 \times .5/6.5 \times 1.5/8.5 \times 1.5/6.5 \times 1.5/8.5 = 3.25e^{-5}
```


Held-Out Estimator

- How much of the probability distribution should be reserved to allow for previously unseen events?
- Can validate choice by holding out part of the training data
- How often do events seen (or not seen) in training data occur in validation data?
- Held-out estimator by Jelinek and Mercer (1985)

Held-Out Estimation

Held-out estimator, define

$$(C^{n}(w_{1}^{n})) = \sum_{\{w_{1}^{n}:C_{\text{train}}^{n}(w_{1}^{n})=r\}} 1$$

$$T^{n}(r) = \sum_{\{w_{1}^{n}:C_{\text{train}}^{n}(w_{1}^{n})=r\}} [C_{\text{ho}}(w_{1}, \dots, w_{n})]$$

Then using equivalent class of r occurrences

$$p_{\text{ho}}(w_1, \dots, w_n) = \frac{T^n(r)/(C^n(w_1^n))^r}{C(\text{total})}$$
 where $C(w_1^n) = r$

Testing Models

- Divide data into training and testing sets.
- Training data: divide into normal training plus validation (smoothing) sets: around 10% for validation (fewer parameters typically)
- Testing data: distinguish between the "real" test set and a development set.
 - Use a development set prevent successive tweaking of the model to fit the test data
 - $\sim 5 10\%$ for testing
 - useful to test on multiple sets of test data in order to obtain the variance of results.
 - Are results (good or bad) just the result of chance? Use t-test

Deleted Estimation

Use data for both training and validation

Divide training data into 2 parts

(1) Train on A, validate on B

(2) Train on *B*, validate on *A*

Combine two models

Cross-Validation

Two estimates:

$$P_{ho} = \frac{T_r^{01}}{N_r^0 N}$$
 $P_{ho} = \frac{T_r^{10}}{N_r^1 N}$ part of training set T_r^{ab} = total number of

 N_r^a = number of *n*-grams occurring r times in a-th

those found in b-th part

Combined estimate:

$$m{P_{ho}} = rac{m{T_r^{01}} + m{T_r^{10}}}{m{N(N_r^0 + N_r^1)}}$$
 (arithmetic mean)

Good-Turing Estimation

 Intuition: re-estimate the amount of mass assigned to n-grams with low (or zero) counts using the number of n-grams with higher counts. For any n-gram that occurs r times, we should assume that it occurs r* times, where N_r is the number of n-grams occurring precisely r times in the training data.

$$r^* = (r+1)\frac{N_{r+1}}{N_r}$$

• To convert the count to a probability, we normalize the n-gram α with r counts as:

$$P_{GT}(\alpha) = r^*/N$$

Good-Turing Estimation

 Note that N is equal to the original number of counts in the distribution.

$$N = \sum_{r=0}^{\infty} N_r r^* = \sum_{r=0}^{\infty} N_{r+1}(r+1) = \sum_{r=0}^{\infty} N_r r$$

 Makes the assumption of a binomial distribution, which works well for large amounts of data and a large vocabulary despite the fact that words and n-grams do not have that distribution.

Good-Turing Estimation (Cont.)

- N-grams with low counts are often treated as if they had a count of 0.
- In practice r* is used only for small counts; counts greater than k=5 are assumed to be reliable: r*=r if r> k; otherwise:

$$r^* = \frac{\frac{(r+1)N_{r+1}}{rN_r} - \frac{(k+1)N_{k+1}}{N_1}}{1 - \frac{(k+1)N_{k+1}}{N_1}}, \text{ for } 1 \le r \le k$$

Good-Turing Estimation (Cont.)

- Based on count equivalent class as r. v.
- Define an adjusted count (another r. v.)

$$r^* = (r+1) \frac{E(C(X) = r+1)}{E(C(X) = r)}$$

Good-Turning Estimator

$$p_{\text{GT}}(w_1^n) = \frac{r^*}{C(\text{total})} = \frac{(r+1)}{C(\text{total})} \frac{S(r+1)}{S(r)} \qquad C(w_1^n) = r > 0$$

$$p_{\text{GT}}(w_1^n) \approx \frac{C(r=1)}{C(\text{total}) * C(r=0)}$$

- S(r) is some estimator of the expectation
- All new counts try to improve estimation in the case of sparse training data set

Discounting Methods

• Absolute discounting: Decrease probability of each observed n-gram by subtracting a small constant when $C(w_1, w_2, ..., w_n) = r$.

$$p_{abs}(w_1, w_2,..., w_n) = \begin{cases} (r - \partial)/N, & \text{if } r > 0 \\ \frac{(B - N_0)\partial}{N_0 N}, & \text{otherwise} \end{cases}$$

• Linear discounting: Decrease probability of each observed n-gram by multiplying by the same proportion when $C(w_1, w_2, ..., w_n) = r$.

54

$$p_{lin}(w_1, w_2,..., w_n) = \begin{cases} (1-\alpha)r/N, & \text{if } r > 0 \\ \frac{\alpha}{N_0}, & \text{otherwise} \end{cases}$$

Combining Estimators: Overview

- If we have several models of how the history predicts what comes next, then we might wish to combine them in the hope of producing an even better model.
- Some combination methods:
 - Katz's Back Off
 - Simple Linear Interpolation
 - General Linear Interpolation

Combining Estimators

- Combination over same or different corpora
- Linear interpolation of trigrams

$$\widetilde{p}(w_n \mid w_{n-1}, w_{n-2}) = \lambda_1 p_1(w_n) + \lambda_2 p_2(w_n \mid w_{n-1}) + \lambda_3 p_3(w_n \mid w_{n-1}, w_{n-2})$$

where $0 \le \lambda_i \le 1$ and $\lambda_1 + \lambda_2 + \lambda_3 = 1$

More extended Linear Interpolation:

$$\widetilde{p}(w|h) = \sum_{i=1}^{H} \lambda_i p_i(w|h) \quad h-\text{history}$$

where
$$0 \le \lambda_i \le 1$$
 and $\sum_{i=1}^{H} \lambda_i = 1$

Backoff

 Back off to lower order n-gram if we have no evidence for the higher order form. Trigram backoff:

$$P_{bo}(w_{i}|w_{i-2}^{i-1}) = \begin{cases} P(w_{i}|w_{i-2}^{i-1}), & \text{if } C(w_{i-2}^{i}) > 0 \\ \\ \alpha_{1}P(w_{i}|w_{i-1}), & \text{if } C(w_{i-2}^{i}) = 0 \text{ and } C(w_{i-1}^{i}) > 0 \end{cases}$$

$$\alpha_{2}P(w_{i}), & \text{otherwise}$$

Katz's Back Off Model

- If the n-gram of concern has appeared more than k times, then an n-gram estimate is used but an amount of the MLE estimate gets discounted (it is reserved for unseen n-grams).
- If the *n*-gram occurred *k* times or less, then we will use an estimate from a shorter n-gram (back-off probability), normalized by the amount of probability remaining and the amount of data covered by this estimate.
- The process continues recursively.

Katz's Back Off Model (Cont.)

 Katz used Good-Turing estimates when an ngram appeared k or fewer times.

$$P_{bo}(w_{i}|w_{i-n+1}^{i-1}) = \begin{cases} (1 - d_{w_{i-n+1}}) \frac{C(w_{i-n+1}^{i})}{C(w_{i-n+1}^{i-1})}, & \text{if } C(w_{i-n+1}^{i}) > k \\ C(w_{i-n+1}^{i-1}) \end{cases}$$

$$\alpha_{w_{i-n+1}^{i-1}} P_{bo}(w_{i}|w_{i-n+2}^{i-1}), & \text{otherwise}$$

Problems with Backing-Off

- If bigram $(w_1 \ w_2)$ is common, but trigram $(w_1 \ w_2 \ w_3)$ is unseen, it may be a *meaningful* gap, rather than a gap due to chance and scarce data
 - i.e., a "grammatical null"
- In that case, it may be inappropriate to back-off to lower-order probability

Linear Interpolation

- One way of solving the sparseness in a trigram model is to mix that model with bigram and unigram models that suffer less from data sparseness.
- This can be done by <u>linear interpolation</u> (also called <u>finite mixture models</u>). When the functions being interpolated all use a subset of the conditioning information, this method is referred to as <u>deleted</u> <u>interpolation</u>.
- The weights can be set using the Expectation-Maximization (EM) algorithm. $P_{li}(w_i \mid w_{i-2}, w_{i-1}) =$

$$\lambda_1 P_1(w_i) + \lambda_2 P_2(w_i \mid w_{i-1}) + \lambda_3 P_3(w_i \mid w_{i-2}, w_{i-1})$$

General Linear Interpolation

$$P_{li}(w_i \mid w_{i-n+1}^{i-1}) = \sum_{k=1}^{n} \lambda(w_{i-k+1}^{i-1}) P_k(w_i \mid w_{i-k+1}^{i-1})$$

where
$$0 \le \lambda(w_{i-k+1}^{i-1}) \le 1$$
, and $\sum_{k} \lambda(w_{i-k+1}^{i-1}) = 1$

- In simple linear interpolation, the weights are just a single number, but one can define a more general and powerful model where the weights are a function of the history
- Need some way to group or bucket lambda histories

Deleted Interpolation Estimation

Deleted interpolation estimator

$$p_{\text{del}}(w_1^n) = \mu_1 p_{\text{ho}}^{12}(w_1^n) + (1 - \mu_1) p_{\text{ho}}^{21}(w_1^n) \quad \text{or}$$

$$p_{\text{del}}(w_1^n) = \left[(T^n(r))^{12} + (T^n(r))^{21} \right] / \left\{ C(\text{total}) \left[(C^n(w_1^n)^r)^1 + (C^n(w_1^n)^r)^2 \right] \right\}$$

- Leaving-one-out (Jackknife example)
 - held-out one sample at a time (many splits)
 - average over all estimates to reduce variance (done often is estimating spectral densities)

Katz's Backing-Off Estimators

$$p_{bo}(w_{i} \mid w_{i-n+1}^{i-1}) = \begin{cases} (1 - \alpha_{i-n+1}^{i-1}) *C(w_{i-n+1}^{i}) / C(w_{i-n+1}^{i-1}) & C(w_{i-n+1}^{i-1}) > k \\ \alpha_{i-n+1}^{i-1} p_{bo}(w_{i} \mid w_{i-n+1}^{i-1}) & \text{otherwise} \end{cases}$$

$$p_{bo}(w_3 \mid w_1^2) = \begin{cases} (1 - \alpha_1^2) * C(w_1^3) / C(w_1^2) & C(w_1^2) > k \ (k = 0 \text{ or } 1) \\ \alpha_1^2 p_{bo}(w_3 \mid w_1^2) & \text{otherwise} \end{cases}$$

- Arguably simple, but quite effective
- N-gram is discounted by some amount so that some reserved counts can be used for unseen ones whose probabilities are estimated by backoff, e.g. unseen trigrams estimated by bigrams
- Discount can be done with Good-Turing estimator

Summary

- Today's Class
 - N-gram estimation on Feb 3 and Feb. 5
 - Lab2 assigned on Jan. 29, due on Feb. 10
- Next Class
 - Project discussion
 - Word Sense Disambiguation
- Reading Assignments
 - Manning and Schutze, Chapter 6

