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Statistical NLP

• Some computational linguistics examples
– Part-of-speech tagging for word sense disambiguation
– Probabilistic parsing for sentence structures
– Message understanding using semantics models
– Statistical machine translation
– Statistical transliteration

• Central to all problems in language modeling (LM)
– Modeling of linguistic units and production rules
– Discrete r. v. with very sparse observations
– Language structure is crucial for efficient modeling
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Probabilities of Word Sequences
• Language modeling (LM): Markov approximation
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• Many will argue that this is a poor assumption, and would not be able 
to handle nested linguistic structures, but the higher order n-gram are 
difficulty to estimate so that a trigram approximation has been a very 
effective one that follows Shannon’s channel modeling paradigm
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Problem Mapping of POS Tagging
• Finite state network (FSN) representation

– State (node) space: the set of tags
– Arc: tag transition (probabilities)
– State output: tag-specific word probabilities
– State-sequence: tag sequence

• An example:
The representative put chairs on the table.
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Noisy 
Channel

Tags T Words W

Statistical POS Tagging

Channel 
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P(W|T): tag-specific word LM

P(T): tag language model

• Bigram tag language model approximation

• Localized tag-specific language model

• Overall approximation
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Problem Mapping for Text Understanding

• Finite state network (FSN) representation
– State (node) space: the set of concepts
– Arc: concept transition (probabilities)
– State output: concept-specific word sequences
– State-sequence: concept sequence (meaning  

expressed in sequence of semantic attributes)
• An example:
I want to fly to Boston from Dallas Friday noon on coach.

Req To-
City

From
-City Time Class
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Noisy 
Channel

Concept C Words W

Statistical Concept Decoding

Channel 
Decoding

Words W Concept C P(W|C): concept-specific word LM

P(C): concept language model
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• Bigram concept language model approximation

• Localized concept-specific bigram or trigram LM

• Overall approximation
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Some Issues before Moving on
• Under-sampling problems already in unigram

– Too little data to estimate too many parameters
– But we can not ignore unobserved events

• For n greater, more estimation & storage problem
– When V=60K, we need VxVxV=256 trillion trigrams
– Serious underflow problem in computing
– Hierarchical data structure is needed, but what and how?

• Recall multinomial distribution, what’s the MLE?
– Count the number of occurrences for unit events
– Count the number of co-occurrences for joint/conditional events

• Are there better ways to count discrete events?
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Text Corpora for N-gram Studies
• Existing: WSJ, Brown corpus, Treebank, AP wire, etc.
• Ongoing: million-book project (Internet Archive)
• For learning purpose: Project Gutenberg (small & 

doable): http://www.gutenberg.org/wiki/Main_page
• Jane Austen’s novels (download on-line, 40GB) 

http://www2.hn.psu.edu/faculty/jmanis/j-austen.htm
– Used in the Manning’s textbook for illustration purposes

• Training set: Emma, Mansfield Park, Northanger Abbey, Pride 
and Prejudice, and Sense and Sensibility

• Testing set: Persuasion
• N=617,091 single-words of text, V=14585 distinct words
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Pre-processing: Clean-up and Normalization

• Handling of punctuations? capitalized words? Other?
• Bracketing of group of words (for easier modeling)
• ‘Non-words’: sentence beginning and ending marks, 

<UNK>
• Numerals: 12 vs. twelve
• Capitalized word can be used for some purposes
• What’s needed is usually application-dependent
• Sometimes tokenization is important

– e.g. no space between Chinese words, i.e. multiple word 
segmentations, many single-character words
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Bernoulli Trials and Applications
• Binary Events:

• How about k successes in n independent trials?
– How many such possibilities: binomial coefficient
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Extension to Multinomial Distribution

• Multinomial Distribution: e.g. animal population

• n-gram usage:
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Observing N-Gram Estimates
• Looking into Table 6.3 for examples from Austen
• Unigram: Zipf’s Law again

– “inferior” is less common than “to”
• Bigram: remember collocation

– P(“to”|”inferior”)=0.212, a very high combination
• Trigram: many unseen events
• 4-gram: even more unseen events
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Generalization Issues
• Set aside some data for cross-validation but 

there is only very little training data
– Too many parameters: over-fitting model will get 

good scores on training data but usually does not 
generalize to unseen testing data

– Regularization: adding penalty terms to penalize too 
good over-fitting of training data

– Dividing training set into initial training and held-out 
set or development set

– Always testing models on unseen evaluation sets
– Sometimes imposing the cross-validation strategy 
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Statistical Estimators
• Example:

• Corpus:  five Jane Austen novels

• N = 617,091 words, V = 14,585 unique words

• Task: predict the next word of the trigram “inferior 
to ___”

• from test data, Persuasion: “[In person, she 
was] inferior to both [sisters.]”

• Given the observed training data …
• How do you develop a model (probability 

distribution) to predict future events?
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The Perfect Language Model

• Sequence of word forms 
• Notation: W = (w1,w2,w3,...,wd)
• The big (modeling) question is “what is p(W)”?
• Well, we know (Bayes/chain rule):

– p(W) = p(w1,w2,w3,...,wd) = p(w1) x p(w2|w1) x 
p(w3|w1,w2) ´...´ p(wd|w1,w2,...,wd-1)

• Not practical (even for short W there are still too 
many parameters)
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Markov Chain
• Unlimited memory (cf. previous foil):

– for wi, we know all its predecessors w1,w2,w3,...,wi-1

• Limited memory:
– we disregard predecessors that are “too old”
– remember only k previous words: wi-k,wi-k+1,...,wi-1

– called “kth order Markov approximation”
• Stationary character (no change over time):

– p(W) = Πi=1..d p(wi|wi-n+1,wi-n+2,...,wi-1) d = |W|
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N-gram Language Models
(n-1)th order Markov approximation gives n-gram LM:

p(W) = Πi=1..d  p(wi|wi-n+1,wi-n+2,...,wi-1)
• In particular (assume vocabulary size |V| = 20k):

– 0-gram : uniform model  p(w) = 1/|V| 1 parameter
– 1-gram : unigram model p(w) 2x104 parameters
– 2-gram : bigram model   p(wi|wi-1) 4x108 parameters
– 3-gram : trigram mode p(wi|wi-2,wi-1) 8x1012 parameters
– 4-gram : tetragram model p(wi| wi-3,wi-2,wi-1) 1.6x1017 parameters
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Reliability vs. Discrimination
• “large green ___________”

tree? mountain? frog? car?
• “swallowed the large green ________”

pill? tidbit? 

• Larger n:  more information about the context 
of the specific instance (greater discrimination)

• Smaller n:  more instances in training data, 
better statistical estimates (more reliability)



20 Center of Signal and Image Processing
Georgia Institute of Technology

LM Observations

• How large n?
– Zero is enough (theoretically)
– But anyway: as much as possible (as close to “perfect”

model as possible)
– Empirically: 3

• parameter estimation? (reliability, data availability, 
storage space, ...)

• 4 is too much: |V| =60k gives 1.296x1019 parameters
• but: 6-7 would be (almost) ideal (having enough data)

– Reliability decreases with increase in detail (need 
compromise)

• For now, word forms only
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Parameter Estimation
• Parameter: numerical value needed to compute p(w|h)
• From data (how else?)
• Data preparation:

• get rid of formatting etc. (“text cleaning”)
• define words (separate but include punctuation, call it “word”, 

unless speech)
• define sentence boundaries (insert “words” <s> and </s>)
• letter case: keep, discard, or be smart:

– name recognition
– number type identification

• numbers: keep,  replace by <num>, or be smart (form ~ 
pronunciation) 
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Maximum Likelihood Estimation of N-grams

• Properties of n-grams

• MLE of Multinomial Distribution Parameters
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Maximum Likelihood Estimate

• MLE: Relative Frequency...
– ...best predicts the data at hand (the “training data”)

• Trigrams from Training Data T:
– count sequences of three words in T: C3(wi-2,wi-1,wi)
– count sequences of two words in T: C2(wi-2,wi-1):

PMLE(wi|wi-2,wi-1) = C3(wi-2,wi-1,wi) / C2(wi-2,wi-1)
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Character Language Model

• Use individual characters instead of words:

• Same formulas and methods
• Might consider 4-grams, 5-grams or even more
• Good for cross-language comparisons
• Transform cross-entropy between letter- and 

word-based models:    
– HS(pc) = HS(pw) / avg. # of characters per word in S

p(W) = Πi=1..d p(ci|ci-n+1,ci-n+2,...,ci-1)
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LM: An Example

Training data: <s0> <s> He can buy you the can of soda </s>
– Unigram:  (8 words in vocabulary)

p1(He) = p1(buy) = p1(you) = p1(the) = p1(of) = p1(soda) = 
.125 p1(can) = .25

– Bigram:
p2(He|<s>) = 1, p2(can|He) = 1, p2(buy|can) = .5, 

p2(of|can) = .5, p2(you |buy) = 1,...
– Trigram: 

p3(He|<s0>,<s>) = 1, p3(can|<s>,He) = 1,  p3(buy|He,can) 
= 1, p3(of|the,can) = 1, ...p3(</s>|of,soda) = 1.

– Entropy:  H(p1) = 2.75,  H(p2) = 1,  H(p3) = 0  
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LM: an Example (The Problem)
• Cross-entropy:

S = <s0> <s> It was the greatest buy of all </s>
• Even HS(p1) fails because:

– all unigrams but p1(the), p1(buy), and p1(of) are 0
– all bigram probabilities are 0
– all trigram probabilities are 0

• Need to make all “theoretically possible”
probabilities non-zero
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LM: Another Example
• Training data S:  |V| =11 (not counting <s> and </s>)

<s> John read Moby Dick </s>
<s> Mary read a different book </s>
<s> She read a book by Cher </s>

• Bigram estimates:
P(She | <s>) = C(<s> She)/ Sumw C(<s> w) = 1/3
P(read | She) =  C(She read)/ Sumw C(She w) = 1
P (Moby | read) = C(read Moby)/ Sumw C(read w) = 1/3
P (Dick | Moby) = C(Moby Dick)/ Sumw C(Moby w) = 1
P(</s> | Dick) = C(Dick </s> )/ Sumw C(Dick w)  = 1

• p(She read Moby Dick) =
p(She | <s>) × p(read | She) × p(Moby | read) × p(Dick | Moby) ×

p(</s> | Dick) = 1/3 × 1 × 1/3 × 1 × 1 = 1/9
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Training Corpus Instances: “inferior to___”
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Actual Probability Distribution
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Maximum Likelihood Estimate
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Comparison
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The Zero Cell Problem

• “Raw” n-gram language model estimate:
– Necessarily, there will be some zeros

• Often trigram model gives 2.16x1014 parameters, and the 
required data ~ 109 words

– Which are true zeros?
• optimal situation: even the least frequent trigram would be seen

several times, in order to distinguish it’s probability vs. other 
trigrams (hapax legomena)

• optimal situation cannot happen, unfortunately  (question: how 
much data would we need?)

– We don’t know; hence, we eliminate them
• Different kinds of zeros: p(w|h) = 0, p(w) = 0
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Need Nonzero Probabilities?
• Avoid infinite Cross Entropy:

– happens when an event is found in the test data 
which has not been seen in training data

• Make the system more robust
– low count estimates: 

• they typically happen for “detailed” but relatively rare 
appearances

– high count estimates: reliable but less “detailed”
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Eliminating Zero Probability: Smoothing

• Get new p’(w) (same W): almost p(w) except 
for eliminating zeros

• Discount w for some p(w) > 0: new p’(w) < p(w)
Sum discounted (p(w) - p’(w)) = D

• Distribute D to all w; p(w) = 0: new p’(w) > p(w)
– possibly also to other w with low p(w)

• For some w (possibly): p’(w) = p(w)
• Make sure SumW p’(w) = 1
• There are many ways of smoothing
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Improving MLE by Discounting
• Handle out-of-vocabulary (OOV) classes

– Not seen in training: count = 0 or 1 (<UNK>)
• Laplace Law (adding one): more for unseen events

– Bayesian estimates assuming a uniform prior
– 99.97% probability mass given to unseen bigrams (Table 6.4)

• Lidstone’s Law

• Jeffrey-Perks Law: Expected Likelihood Estimation
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Laplace’s Law: Smoothing by Adding 1

• Laplace’s Law:
– PLAP(w1,..,wn)=(C(w1,..,wn)+1)/(N+B), where C(w1,..,wn) is 

the frequency of n-gram w1,..,wn, N is the number of 
training instances, and B is the number of bins training 
instances are divided into (vocabulary size)

– Problem if B > C(W) (can be the case; even >> C(W))
– PLAP(w | h) = (C(h,w) + 1)  /  (C(h) + B)

• The idea is to give a little bit of the probability space 
to unseen events



37 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813 Spring 2009

Add 1 Smoothing Example
pMLE(Cher read Moby Dick) =

p(Cher | <s>) × p(read | Cher) × p(Moby | read) × p(Dick | 
Moby) × p(</s> | Dick) = 0 × 0 × 1/3 × 1 × 1 = 0

– p(Cher | <s>) = (1 + C(<s> Cher))/(11 + C(<s>)) = (1 + 0)  / (11 + 3)  
= 1/14 = .0714

– p(read | Cher) = (1 + C(Cher read))/(11 + C(Cher)) = (1 + 0)  / (11 + 
1)  = 1/12 = .0833

– p(Moby | read) = (1 + C(read Moby))/(11 + C(read)) = (1 + 1) / (11 + 
3) = 2/14 = .1429

– P(Dick | Moby) = (1 + C(Moby Dick))/(11 + C(Moby)) = (1 + 1) / (11 + 
1) = 2/12 = .1667

– P(</s> | Dick) = (1 + C(Dick </s>))/(11 + C<s>) = (1 + 1) / (11 + 3) = 
2/14 = .1429

p’(Cher read Moby Dick) = p(Cher | <s>)×p(read | Cher)×p(Moby | read) ×
p(Dick | Moby)×p(</s> | Dick) = 1/14×1/12×2/14×2/12×2/14 = 2.02e-5
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Laplace’s Law (Rriginal)
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Laplace’s Law (Adding One)
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Objections to Laplace’s Law
• For NLP applications that are very sparse, 

Laplace’s Law actually gives far too much of 
the probability space to unseen events

• Worse at predicting the actual probabilities of 
bigrams with zero counts than other methods

• Count variances are actually greater than the 
MLE
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Lidstone’s Law
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P = probability of specific n-gram
C = count of that n-gram in training data
N = total n-grams in training data
B = number of “bins” (possible n-grams)
λ = small positive number 

MLE: λ = 0
LaPlace’s Law:  λ = 1
Jeffreys-Perks Law:  λ = ½

PLid(w | h) = (C(h,w) + λ)  /  (C(h) + B λ)
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Jeffreys-Perks Law
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Objections to Lidstone’s Law
• Need an a priori way to determine λ
• Predicts all unseen events to be equally likely
• Gives probability estimates linear in the 

M.L.E. frequency
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Lidstone’s Law with λ=.5
pMLE(Cher read Moby Dick) =

p(Cher | <s>) × p(read | Cher) × p(Moby | read) × p(Dick | 
Moby) × p(</s> | Dick) = 0 × 0 × 1/3 × 1 × 1 = 0

p(Cher | <s>) = (.5 + C(<s> Cher))/(.5* 11 + C(<s>)) = (.5 + 0) / (.5*11 + 
3)  = .5/8.5 =.0588

p(read | Cher) = (.5 + C(Cher read))/(.5* 11 + C(Cher)) = (.5 + 0)  / (.5* 
11 + 1)  = .5/6.5 = .0769

p(Moby | read) = (.5 + C(read Moby))/(.5* 11 + C(read)) = (.5 + 1) / (.5* 
11 + 3) = 1.5/8.5 = .1765

P(Dick | Moby) = (.5 + C(Moby Dick))/(.5* 11 + C(Moby)) = (.5 + 1) / (.5* 
11 + 1) = 1.5/6.5 = .2308

P(</s> | Dick) = (.5 + C(Dick </s>))/(.5* 11 + C<s>) = (.5 + 1) / (.5* 11 + 
3) = 1.5/8.5 = .1765

p’(Cher read Moby Dick) =
p(Cher | <s>) × p(read | Cher) × p(Moby | read) × p(Dick | Moby) ×

p(</s> | Dick) = .5/8.5 × .5/6.5 × 1.5/8.5 × 1.5/6.5 × 1.5/8.5 = 3.25e-5
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Held-Out Estimator
• How much of the probability distribution 

should be reserved to allow for previously 
unseen events?

• Can validate choice by holding out part of the 
training data

• How often do events seen  (or not seen) in 
training data occur in validation data? 

• Held-out estimator by Jelinek and Mercer 
(1985)
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Held-Out Estimation
• Held-out estimator, define

• Then using equivalent class of r occurrences
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Testing Models
• Divide data into training and testing sets.
• Training data: divide into normal training plus validation 

(smoothing) sets: around 10% for validation (fewer 
parameters typically)

• Testing data:  distinguish between the “real” test set 
and a development set.  
– Use a development set prevent successive tweaking of the 

model to fit the test data
– ~ 5 – 10% for testing
– useful to test on multiple sets of test data in order to obtain the 

variance of results.
– Are results (good or bad) just the result of chance?  Use t-test
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Deleted Estimation

• Use data for both training and validation

Divide training data 
into 2 parts

(1) Train on A, validate 
on B

(2) Train on B, validate 
on A

Combine two models

A B

train validate

validate train

Model 1

Model 2

Model 1 Model 2+ Final Model
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Cross-Validation
Two estimates:

Combined estimate:
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Good-Turing Estimation
• Intuition: re-estimate the amount of mass assigned to 

n-grams with low  (or zero) counts using the number 
of n-grams with higher counts.  For any n-gram that 
occurs r times, we should assume that it occurs r*
times, where Nr is the number of n-grams occurring 
precisely r times in the training data.

• To convert the count to a probability, we normalize 
the n-gram α with r counts as:

r

r

N
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+=

NrPGT
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Good-Turing Estimation
• Note that N is equal to the original number of 

counts in the distribution. 

• Makes the assumption of a binomial 
distribution, which works well for large 
amounts of data and a large vocabulary 
despite the fact that words and n-grams do 
not have that distribution.
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Good-Turing Estimation (Cont.)
• N-grams with low counts are often treated as 

if they had a count of 0.
• In practice r* is used only for small counts; 

counts greater than k=5 are assumed to be 
reliable: r*=r if r> k; otherwise:
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Good-Turing Estimation (Cont.)
• Based on count equivalent class as r. v.
• Define an adjusted count (another r. v.)

• Good-Turning Estimator

• S(r) is some estimator of the expectation
• All new counts try to improve estimation in the case 

of sparse training data set
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Discounting Methods
• Absolute discounting: Decrease probability of each 

observed n-gram by subtracting a small constant 
when C(w1, w2, …, wn) = r:

• Linear discounting: Decrease probability of each 
observed n-gram by multiplying by the same 
proportion when C(w1, w2, …, wn) = r:
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Combining Estimators: Overview
• If we have several models of how the history 

predicts what comes next, then we might wish 
to combine them in the hope of producing an 
even better model.

• Some combination methods:
– Katz’s Back Off 
– Simple Linear Interpolation
– General Linear Interpolation
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Combining Estimators
• Combination over same or different corpora
• Linear interpolation of trigrams

• More extended Linear Interpolation:
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Backoff

• Back off to lower order n-gram if we have no 
evidence for the higher order form.  Trigram 
backoff:
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Katz’s Back Off Model
• If the n-gram of concern has appeared more 

than k times, then an n-gram estimate is used 
but an amount of the MLE estimate gets 
discounted (it is reserved for unseen n-grams).

• If the n-gram occurred k times or less, then we 
will use an estimate from a shorter n-gram 
(back-off probability), normalized by the amount 
of probability remaining and the amount of data 
covered by this estimate.

• The process continues recursively.
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Katz’s Back Off Model (Cont.)
• Katz used Good-Turing estimates when an n-

gram appeared k or fewer times.  
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Problems with Backing-Off
• If bigram (w1 w2) is common, but trigram (w1 w2 w3) 

is unseen, it may be a meaningful gap, rather than 
a gap due to chance and scarce data
– i.e., a “grammatical null”

• In that case, it may be inappropriate to back-off to 
lower-order probability
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Linear Interpolation
• One way of solving the sparseness in a trigram model is 

to mix that model with bigram and unigram models that 
suffer less from data sparseness.

• This can be done by linear interpolation (also called 
finite mixture models). When the functions being 
interpolated all use a subset of the conditioning 
information, this method is referred to as deleted 
interpolation.

• The weights can be set using the Expectation-
Maximization (EM) algorithm. =−− ),( 12| iiili wwwP

),|()|()( 123312211 −−− ++ iiiiii wwwPwwPwP λλλ
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General Linear Interpolation

• In simple linear interpolation, the weights are just a single 
number, but one can define a more general and powerful 
model where the weights are a function of the history

• Need some way to group or bucket lambda histories
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Deleted Interpolation Estimation
• Deleted interpolation estimator

• Leaving-one-out (Jackknife example)
– held-out one sample at a time (many splits)
– average over all estimates to reduce variance (done 

often is estimating spectral densities)
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Katz’s Backing-Off Estimators

– Arguably simple, but quite effective
– N-gram is discounted by some amount so that 

some reserved counts can be used for unseen 
ones whose probabilities are estimated by back-
off, e.g. unseen trigrams estimated by bigrams

– Discount can be done with Good-Turing estimator
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Summary
• Today’s Class

– N-gram estimation on Feb 3 and Feb. 5
– Lab2 assigned on Jan. 29, due on Feb. 10

• Next Class
– Project discussion
– Word Sense Disambiguation

• Reading Assignments
– Manning and Schutze, Chapter 6
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