ECE8813
Statistical Natural Language Processing

Lectures 9 \& 10: N-gram Estimation

Chin-Hui Lee

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332, USA
chl@ece.gatech.edu

Statistical NLP

- Some computational linguistics examples
- Part-of-speech tagging for word sense disambiguation
- Probabilistic parsing for sentence structures
- Message understanding using semantics models
- Statistical machine translation
- Statistical transliteration
- Central to all problems in language modeling (LM)
- Modeling of linguistic units and production rules
- Discrete r. v. with very sparse observations
- Language structure is crucial for efficient modeling

Probabilities of Word Sequences

- Language modeling (LM): Markov approximation

Given a sequence of word: $W=\left[w_{1}, \ldots, w_{W]}\right]$, what is $P(W)$?

$$
\begin{aligned}
& P(W)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) \cdots P\left(w_{W W \mid} \mid w_{1}, \ldots, w_{W \mid-1}\right) \quad n-\operatorname{gram} \\
& \approx P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) \cdots P\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right) \prod_{k=n}^{|W|} P\left(w_{k} \mid w_{k-1}, w_{k-2}, \ldots, w_{k-n+1}\right) \\
& =P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) \prod_{k=n}^{W \mid 1} P\left(w_{k} \mid w_{k-1}, w_{k-2}\right) \quad \text { trigram approximation }
\end{aligned}
$$

- Many will argue that this is a poor assumption, and would not be able to handle nested linguistic structures, but the higher order n-gram are difficulty to estimate so that a trigram approximation has been a very effective one that follows Shannon's channel modeling paradigm

Problem Mapping of POS Tagging

- Finite state network (FSN) representation
- State (node) space: the set of tags
- Arc: tag transition (probabilities)
- State output: tag-specific word probabilities
- State-sequence: tag sequence
- An example:

The representative put chairs on the table.

Statistical POS Tagging

$\xrightarrow{\text { Tags } \boldsymbol{T}}$| Noisy |
| :---: |
| Channel | Words w| $\hat{T}=\arg \max _{T \in \Psi} P(T \mid W)$ |
| :--- |
| $=\arg \max _{T \in \Psi} P(W \mid T) P(T)$ |

Words W

	Tags
Decoding	

$P(W \mid T)$: tag-specific word LM
$P(T)$: tag language model

- Bigram tag language model approximation

$$
P(T)=P\left(t_{1}^{Q}\right) \approx \prod_{q=1}^{Q} P\left(t_{q} \mid t_{q-1}\right) \quad P\left(t_{1} \mid t_{0}\right)=1
$$

- Localized tag-specific language model

$$
P(W \mid T)=P\left(w_{1}^{Q} \mid t_{1}^{Q}\right) \approx \prod_{q=1}^{Q} P\left(w_{q} \mid t_{1}^{n}\right) \approx \prod_{q=1}^{Q} P\left(w_{q} \mid t_{q}\right)
$$

- Overall approximation $\hat{t}_{1}^{Q}=\arg \max _{T} P(W \mid T) P(T) \approx \arg \max _{t_{1}^{Q}} \prod_{q=1}^{Q} P\left(w_{q} \mid t_{q}\right) P\left(t_{q} \mid t_{q-1}\right)$

Problem Mapping for Text Understanding

- Finite state network (FSN) representation
- State (node) space: the set of concepts
- Arc: concept transition (probabilities)
- State output: concept-specific word sequences
- State-sequence: concept sequence (meaning expressed in sequence of semantic attributes)
- An example:

I want to flv to Boston from Dallas Friday noon on coach.

Statistical Concept Decoding

- Bigram concept language model approximation

$$
P(C)=P\left(c_{1}^{Q}\right) \approx \prod_{q=1}^{Q} P\left(c_{q} \mid c_{q-1}\right) \quad P\left(c_{1} \mid c_{0}\right)=1
$$

- Localized concept-specific bigram or trigram LM

$$
P(W \mid C)=P\left(w_{1}^{Q} \mid c_{1}^{Q}\right) \approx \prod_{q=1}^{Q} P\left(w_{1}^{Q} \mid c_{q}\right) \approx \prod_{q=1}^{Q} P\left(w_{q-2}^{q} \mid c_{q}\right)
$$

- Overall approximation

$$
\hat{c}_{1}^{Q}=\operatorname{argmax}_{C} P(W \mid C) P(C) \approx \operatorname{argmax}_{c_{1}^{q}} \prod_{q=1}^{Q} P\left(w_{q-2}^{q} \mid c_{q}\right) P\left(c_{q} \mid c_{q-1}\right)
$$

Some Issues before Moving on

- Under-sampling problems already in unigram
- Too little data to estimate too many parameters
- But we can not ignore unobserved events

$$
U_{1}(x, V)=\left\{\begin{array}{ll}
f_{x} & 1 \leq x \leq V \\
\varepsilon_{1} & \text { otherwise }
\end{array} \Omega_{x}=\left\{w_{1}, . ., w_{V}, . .\right\}\right.
$$

- For n greater, more estimation \& storage problem
- When $V=60 \mathrm{~K}$, we need $V \times V \times V=256$ trillion trigrams
- Serious underflow problem in computing
- Hierarchical data structure is needed, but what and how?
- Recall multinomial distribution, what's the MLE?
- Count the number of occurrences for unit events
- Count the number of co-occurrences for joint/conditional events
- Are there better ways to count discrete events?

Text Corpora for N -gram Studies

- Existing: WSJ, Brown corpus, Treebank, AP wire, etc.
- Ongoing: million-book project (Internet Archive)
- For learning purpose: Project Gutenberg (small \& doable): http://www.gutenberg.org/wiki/Main_page
- Jane Austen's novels (download on-line, 40GB) http://www2.hn.psu.edu/faculty/jmanis/j-austen.htm
- Used in the Manning's textbook for illustration purposes
- Training set: Emma, Mansfield Park, Northanger Abbey, Pride and Prejudice, and Sense and Sensibility
- Testing set: Persuasion
- $N=617,091$ single-words of text, $V=14585$ distinct words

Pre-processing: Clean-up and Normalization

- Handling of punctuations? capitalized words? Other?
- Bracketing of group of words (for easier modeling)
'Non-words’: sentence beginning and ending marks, <UNK>
- Numerals: 12 vs. twelve
- Capitalized word can be used for some purposes
- What's needed is usually application-dependent
- Sometimes tokenization is important
- e.g. no space between Chinese words, i.e. multiple word segmentations, many single-character words

Bernoulli Trials and Applications

Binary Events:

$P(A)=P($ "success" $)=p, P(\bar{A})=P("$ failure" $)=q=1-p$ How about k successes in n independent trials?

- How many such possibilities: binomial coefficient

$$
\begin{gathered}
{ }_{n} C_{k}=\binom{n}{k}=\frac{1}{k!}[n *(n-1) \cdots *(n-k+1)]=\frac{n!}{k!(n-k)!} \\
p_{n}(k)=P(k \text { successes in } n \text { trials })=\binom{n}{k} p^{k} q^{(n-k)}
\end{gathered}
$$

Extension to Multinomial Distribution

- Multinomial Distribution: e.g. animal population
$M\left(r_{1}, \ldots, r_{M} ; N ; p_{1}, \ldots, p_{M}\right)=\frac{N!}{r_{1}!\cdots r_{M}!} \prod_{i=1}^{M} p_{i}^{r_{i}} \quad 0 \leq r_{i} \quad \sum_{i=1}^{M} r_{i}=N$
- n-gram usage:

1. $r_{i}: i-$ th event for observing a specific n-gram, $e_{i}=\left(w_{1}, \ldots, w_{n}\right)$
2. N_{n} : total number of n-gram events observedin the corpus: $\sum_{i} C\left(e_{i}\right)=N_{n}$
3. Total number of distinct events of interests: $M=|V|^{n}$
4. Conditional event ($W \mid w_{1}, \ldots, w_{n-1}$) is a unigram distribution over all W
5. Each unigram r.v.follows a multinomial distribution
6. Issue with unobserved events and spare training data

Observing N-Gram Estimates

- Looking into Table 6.3 for examples from Austen
- Unigram: Zipf's Law again
- "inferior" is less common than "to"
- Bigram: remember collocation
- P("to"|"inferior")=0.212, a very high combination
- Trigram: many unseen events
- 4-gram: even more unseen events

Generalization Issues

- Set aside some data for cross-validation but there is only very little training data
- Too many parameters: over-fitting model will get good scores on training data but usually does not generalize to unseen testing data
- Regularization: adding penalty terms to penalize too good over-fitting of training data
- Dividing training set into initial training and held-out set or development set
- Always testing models on unseen evaluation sets
- Sometimes imposing the cross-validation strategy

Statistical Estimators

- Example:
- Corpus: five Jane Austen novels
- $\mathrm{N}=617,091$ words, $\mathrm{V}=14,585$ unique words
- Task: predict the next word of the trigram "inferior to \qquad
- from test data, Persuasion: "[In person, she was] inferior to both [sisters.]"
- Given the observed training data ...
- How do you develop a model (probability distribution) to predict future events?

The Perfect Language Model

- Sequence of word forms
- Notation: $W=\left(w_{1}, W_{2}, w_{3}, \ldots, w_{d}\right)$
- The big (modeling) question is "what is $p(W)$ "?
- Well, we know (Bayes/chain rule):

$$
\begin{aligned}
& -p(W)=p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{d}\right)=p\left(w_{1}\right) \times p\left(w_{2} \mid w_{1}\right) \times \\
& p\left(w_{3} \mid w_{1}, w_{2}\right)^{\prime} \ldots \prime p\left(w_{d} \mid w_{1}, w_{2}, \ldots, w_{d-1}\right)
\end{aligned}
$$

- Not practical (even for short W there are still too many parameters)

Markov Chain

- Unlimited memory (cf. previous foil):
- for w_{i}, we know all its predecessors $w_{1}, w_{2}, w_{3}, \ldots, w_{i-1}$
- Limited memory:
- we disregard predecessors that are "too old"
- remember only k previous words: $w_{i-k}, w_{i-k+1}, \ldots, w_{i-1}$
- called " $k^{\text {th }}$ order Markov approximation"
- Stationary character (no change over time):
$-p(W)=\prod_{\mathrm{i}=1 . . \mathrm{d}} p\left(w_{i} \mid w_{i-n+1}, w_{i-n+2}, \ldots, w_{i-1}\right) d=|W|$

N-gram Language Models

$(n-1)^{\text {th }}$ order Markov approximation gives n-gram LM:

$$
p(W)=\prod_{\mathrm{i}=1 . . \mathrm{d}} p\left(w_{i} \mid w_{i-n+1}, w_{i-n+2}, \ldots, w_{i-1}\right)
$$

- In particular (assume vocabulary size $|V|=20 \mathrm{k}$):
- 0-gram : uniform model $\quad p(w)=1 /|V| \quad 1$ parameter
- 1-gram : unigram model $p(w) \quad 2 \times 10^{4}$ parameters
- 2-gram : bigram model $\quad p\left(w_{i} \mid w_{i-1}\right) \quad 4 \times 10^{8}$ parameters
- 3-gram : trigram mode $\quad p\left(w_{i} \mid w_{i-2}, w_{i-1}\right) \quad 8 \times 10^{12}$ parameters
- 4-gram : tetragram model $p\left(w_{i} \mid w_{i-3}, w_{i-2}, w_{i-1}\right) 1.6 \times 10^{17}$ parameters

Reliability vs. Discrimination

- "large green
tree? mountain? frog? car?
- "swallowed the large green \qquad
pill? tidbit?
- Larger n : more information about the context of the specific instance (greater discrimination)
- Smaller n : more instances in training data, better statistical estimates (more reliability)

LM Observations

- How large n ?
- Zero is enough (theoretically)
- But anyway: as much as possible (as close to "perfect" model as possible)
- Empirically: $\underline{3}$
- parameter estimation? (reliability, data availability, storage space, ...)
- 4 is too much: $|V|=60 \mathrm{k}$ gives 1.296×10^{19} parameters
- but: 6-7 would be (almost) ideal (having enough data)
- Reliability decreases with increase in detail (need compromise)
- For now, word forms only

Parameter Estimation

- Parameter: numerical value needed to compute $p(w \mid h)$
- From data (how else?)
- Data preparation:
- get rid of formatting etc. ("text cleaning")
- define words (separate but include punctuation, call it "word", unless speech)
- define sentence boundaries (insert "words" <s> and </s>)
- letter case: keep, discard, or be smart:
- name recognition
- number type identification
- numbers: keep, replace by <num>, or be smart (form ~ pronunciation)

Maximum Likelihood Estimation of N-grams

- Properties of n-grams

$$
\begin{aligned}
& P\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right)=\frac{P\left(w_{1}, \ldots, w_{n-1}, w_{n}\right)}{P\left(w_{1}, \ldots, w_{n-1}\right)}, \\
& \sum_{w_{n} \in V} P\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right)=1, \\
& \sum_{i} C\left(e_{i}\right)=N_{n} \quad e_{i}: i \text { - th event }
\end{aligned}
$$

- MLE of Multinomial Distribution Parameters

$$
\begin{aligned}
& P_{M L E}\left(w_{1}, \ldots, w_{n-1}, w_{n}\right)=\frac{C\left(w_{1}, \ldots, w_{n-1}, w_{n}\right)}{N_{n}}, \\
& P_{M L E}\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right)=\frac{C\left(w_{1}, \ldots, w_{n-1}, w_{n}\right)}{C\left(w_{1}, \ldots, w_{n-1}\right)}, \\
& \sum_{W \in V} C\left(w_{1}, \ldots, w_{n-1}, W\right)=C\left(w_{1}, \ldots, w_{n-1}\right)
\end{aligned}
$$

Maximum Likelihood Estimate

- MLE: Relative Frequency...
- ...best predicts the data at hand (the "training data")
- Trigrams from Training Data T :
- count sequences of three words in $T: C_{3}\left(W_{i-2}, W_{i-1}, W_{i}\right)$
- count sequences of two words in $T: C_{2}\left(W_{i-2}, W_{i-1}\right)$:
$P_{\text {MLE }}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=C_{3}\left(w_{i-2}, w_{i-1}, w_{i}\right) / C_{2}\left(w_{i-2}, w_{i-1}\right)$

Character Language Model

- Use individual characters instead of words:

$$
p(W)=\prod_{\mathrm{i}=1 . \mathrm{d}} p\left(c_{i} \mid c_{i-n+1}, c_{i-n+2}, \ldots, c_{i-1}\right)
$$

- Same formulas and methods
- Might consider 4-grams, 5-grams or even more
- Good for cross-language comparisons
- Transform cross-entropy between letter- and word-based models:
- $H_{s}\left(p_{c}\right)=H_{s}\left(p_{w}\right) /$ avg. \# of characters per word in S

LM: An Example

Training data: <s $\mathrm{s}_{0}>$ <s> He can buy you the can of soda </s>

- Unigram: (8 words in vocabulary)

$$
\begin{aligned}
& p_{1}(\mathrm{He})=p_{1}(\text { buy })=p_{1}(\text { you })=p_{1}(\text { the })=p_{1}(\text { of })=p_{1}(\text { soda })= \\
& .125 p_{1}(\text { can })=.25
\end{aligned}
$$

- Bigram:

$$
\begin{gathered}
p_{2}(\mathrm{He} \mid<\mathrm{s}>)=1, p_{2}(\text { can } \mid \mathrm{He})=1, p_{2}(\text { buy } \mid \text { can })=.5, \\
p_{2}(\text { of } \mid \text { can })=.5, p_{2}(\text { you } \mid \text { buy })=1, \ldots
\end{gathered}
$$

- Trigram:

$$
\begin{aligned}
& p_{3}\left(\mathrm{He} \mid<\mathrm{s}_{0}>,<\mathrm{s}>\right)=1, p_{3}(\text { can } \mid<\mathrm{s}>, \mathrm{He})=1, p_{3}(\text { buy } \mid \text { He }, \text { can }) \\
& \quad=1, p_{3}(\text { of } \mid \text { the }, \text { can })=1, \ldots p_{3}(</ s>\mid \text { of, soda })=1 .
\end{aligned}
$$

- Entropy: $H\left(p_{1}\right)=2.75, H\left(p_{2}\right)=1, H\left(p_{3}\right)=0$

LM: an Example (The Problem)

- Cross-entropy:

$$
S=\left\langle S_{0}\right\rangle\langle s\rangle \text { It was the greatest buy of all </s> }
$$

- Even $\mathrm{H}_{\mathrm{S}}\left(\mathrm{p}_{1}\right)$ fails because:
- all unigrams but p_{1} (the), p_{1} (buy), and p_{1} (of) are 0
- all bigram probabilities are 0
- all trigram probabilities are 0
- Need to make all "theoretically possible" probabilities non-zero

LM: Another Example

- Training data $\mathrm{S}:|\mathrm{V}|=11$ (not counting $\langle\mathrm{s}\rangle$ and $</ \mathrm{s}\rangle$)
<s> John read Moby Dick </s>
<s> Mary read a different book </s>
<s> She read a book by Cher </s>
- Bigram estimates:

$$
\begin{aligned}
& \left.\mathrm{P}(\text { She }|<\mathrm{s}\rangle)=\mathrm{C}(<\mathrm{s}>\text { She }) / \text { Sum }_{\mathrm{w}} \mathrm{C}(<\mathrm{s}\rangle \mathrm{w}\right)=1 / 3 \\
& \mathrm{P}(\text { read } \mid \text { She })=\mathrm{C}(\text { She read }) / \operatorname{Sum}_{\mathrm{w}} \mathrm{C}(\text { She w })=1 \\
& \mathrm{P}(\text { Moby } \mid \text { read })=\mathrm{C}(\text { read Moby }) / \operatorname{Sum}_{\mathrm{w}} \mathrm{C}(\text { read w })=1 / 3 \\
& \mathrm{P}(\text { Dick | Moby })=\mathrm{C}(\text { Moby Dick }) / \operatorname{Sum}_{\mathrm{w}} \mathrm{C}(\text { Moby } \mathrm{w})=1 \\
& \mathrm{P}(</ \mathrm{s}>\mid \text { Dick })=\mathrm{C}(\text { Dick </s> }) / \text { Sum }_{\mathrm{w}} \mathrm{C}(\text { Dick w })=1
\end{aligned}
$$

- $\mathrm{p}($ She read Moby Dick) $=$

$$
\begin{aligned}
& p(\text { She } \mid<s>) \times p(\text { read } \mid \text { She }) \times p(\text { Moby } \mid \text { read }) \times p(\text { Dick } \mid \text { Moby }) \times \\
& p(</ s>\mid \text { Dick })=1 / 3 \times 1 \times 1 / 3 \times 1 \times 1=1 / 9
\end{aligned}
$$

Training Corpus Instances: "inferior to

Actual Probability Distribution

Maximum Likelihood Estimate

Comparison

The Zero Cell Problem

- "Raw" n-gram language model estimate:
- Necessarily, there will be some zeros
- Often trigram model gives 2.16×10^{14} parameters, and the required data $\sim 10^{9}$ words
- Which are true zeros?
- optimal situation: even the least frequent trigram would be seen several times, in order to distinguish it's probability vs. other trigrams (hapax legomena)
- optimal situation cannot happen, unfortunately (question: how much data would we need?)
- We don't know; hence, we eliminate them
- Different kinds of zeros: $p(w \mid h)=0, p(w)=0$

Need Nonzero Probabilities?

- Avoid infinite Cross Entropy:
- happens when an event is found in the test data which has not been seen in training data
- Make the system more robust
- low count estimates:
- they typically happen for "detailed" but relatively rare appearances
- high count estimates: reliable but less "detailed"

Eliminating Zero Probability: Smoothing

- Get new $p^{\prime}(w)$ (same W): almost $p(w)$ except for eliminating zeros
- Discount w for some $p(w)>0$: new $p^{\prime}(w)<p(w)$ $\operatorname{Sum}_{\text {discounted }}\left(p(w)-p^{\prime}(w)\right)=D$
- Distribute D to all $w ; p(w)=0$: new $p^{\prime}(w)>p(w)$ - possibly also to other w with low $p(w)$
- For some w (possibly): $p^{\prime}(w)=p(w)$
- Make sure $\operatorname{Sum}_{w} p^{\prime}(w)=1$
- There are many ways of smoothing

Improving MLE by Discounting

- Handle out-of-vocabulary (OOV) classes
- Not seen in training: count = 0 or 1 (<UNK>)
- Laplace Law (adding one): more for unseen events
- Bayesian estimates assuming a uniform prior
- 99.97% probability mass given to unseen bigrams (Table 6.4)

$$
p_{\text {Lap }}=\left[C\left(w_{1}, \ldots, w_{n}\right)+1\right] /[C(\text { total })+M]
$$

- Lidstone's Law $p_{\text {Lid }}=\left[C\left(w_{1}, \ldots, w_{n}\right)+\lambda\right] /[C($ total $)+M \lambda], \lambda<1$

$$
=\mu * \frac{C\left(w_{1}, \ldots, w_{n}\right)}{C(\text { total })}+(1-\mu) \frac{1}{M}, \mu=\frac{C(\text { total })}{C(\text { total })+M \lambda}
$$

- Jeffrey-Perks Law: Expected Likelihood Estimation

$$
\lambda=0.5 \text { and } \mu=\frac{C(\text { total })}{C(\text { total })+0.5 M}
$$

Laplace's Law: Smoothing by Adding 1

- Laplace's Law:
- $P_{\text {LAP }}\left(w_{1}, . ., w_{n}\right)=\left(C\left(w_{1}, . ., w_{n}\right)+1\right) /(N+B)$, where $C\left(w_{1}, . ., w_{n}\right)$ is the frequency of n-gram $w_{1}, . ., w_{n}, N$ is the number of training instances, and B is the number of bins training instances are divided into (vocabulary size)
- Problem if $B>C(W)$ (can be the case; even >> $C(W)$)
$-P_{\text {LAP }}(w \mid h)=(C(h, w)+1) /(C(h)+B)$
- The idea is to give a little bit of the probability space to unseen events

Add 1 Smoothing Example

$\mathrm{p}_{\mathrm{MLE}}($ Cher read Moby Dick) $=$ $p($ Cher $\mid<s>) \times p($ read \mid Cher $) \times p($ Moby \mid read $) \times p($ Dick \mid Moby) $\times \mathrm{p}(</ \mathrm{s}>\mid$ Dick $)=0 \times 0 \times 1 / 3 \times 1 \times 1=0$
$-\mathrm{p}($ Cher $\mid<\mathrm{s}>)=(1+\mathrm{C}(<\mathrm{s}>$ Cher $)) /(11+\mathrm{C}(<\mathrm{s}>))=(1+0) /(11+3)$ $=1 / 14=.0714$
$-\mathrm{p}($ read \mid Cher $)=(1+\mathrm{C}($ Cher read $)) /(11+\mathrm{C}($ Cher $))=(1+0) /(11+$ 1) $=1 / 12=.0833$
$-\mathrm{p}($ Moby \mid read $)=(1+\mathrm{C}($ read Moby $)) /(11+\mathrm{C}($ read $))=(1+1) /(11+$ 3) $=2 / 14=.1429$
$-\mathrm{P}($ Dick | Moby $)=(1+\mathrm{C}($ Moby Dick $)) /(11+\mathrm{C}($ Moby $))=(1+1) /(11+$ 1) $=2 / 12=.1667$
$-\mathrm{P}(</ \mathrm{s}\rangle \mid$ Dick $)=(1+\mathrm{C}($ Dick $</ \mathrm{s}>)) /(11+\mathrm{C}<\mathrm{s}\rangle)=(1+1) /(11+3)=$ $2 / 14=.1429$
$\mathrm{p}^{\prime}($ Cher read Moby Dick $)=\mathrm{p}($ Cher $\mid<s>) \times p($ read \mid Cher $) \times p($ Moby | read $) \times$ $p($ Dick \mid Moby $) \times p(</ s>\mid$ Dick $)=1 / 14 \times 1 / 12 \times 2 / 14 \times 2 / 12 \times 2 / 14=2.02 e^{-5}$

Laplace's Law (Rriginal)

Laplace's Law (Adding One)

Objections to Laplace's Law

- For NLP applications that are very sparse, Laplace's Law actually gives far too much of the probability space to unseen events
- Worse at predicting the actual probabilities of bigrams with zero counts than other methods
- Count variances are actually greater than the MLE

Lidstone's Law

$$
P_{\text {Lid }}\left(w_{1} \cdots w_{n}\right)=\frac{C\left(w_{1} \cdots w_{n}\right)+\lambda}{N+B \lambda}
$$

$\mathrm{P}=$ probability of specific n-gram
$\mathrm{C}=$ count of that n -gram in training data
$\mathrm{N}=$ total n-grams in training data
B = number of "bins" (possible n-grams)
$\lambda=$ small positive number
MLE: $\lambda=0$
LaPlace's Law: $\lambda=1$
Jeffreys-Perks Law: $\lambda=1 / 2$
$P_{\text {Lid }}(w \mid h)=(C(h, w)+\lambda) /(C(h)+B \lambda)$

Jeffreys-Perks Law

Objections to Lidstone's Law

- Need an a priori way to determine λ
- Predicts all unseen events to be equally likely
- Gives probability estimates linear in the M.L.E. frequency

Lidstone's Law with $\lambda=.5$

$\mathrm{p}_{\mathrm{MLE}}($ Cher read Moby Dick) $=$
$p($ Cher $\mid<s>) \times p($ read | Cher $) \times p($ Moby \mid read $) \times p($ Dick \mid
Moby) $\times \mathrm{p}(</ \mathrm{s}>\mid$ Dick $)=0 \times 0 \times 1 / 3 \times 1 \times 1=0$
$\mathrm{p}($ Cher $\mid<s>)=(.5+\mathrm{C}(<s>$ Cher $)) /\left(.5^{*} 11+\mathrm{C}(<\mathrm{s}>)\right)=(.5+0) /(.5 \star 11+$ 3) $=.5 / 8.5=.0588$
$\mathrm{p}($ read \mid Cher $)=(.5+\mathrm{C}($ Cher read $)) /\left(.5^{*} 11+\mathrm{C}(\right.$ Cher $\left.)\right)=(.5+0) /\left(.5^{*}\right.$ $11+1)=.5 / 6.5=.0769$
$\mathrm{p}($ Moby \mid read $)=(.5+\mathrm{C}($ read Moby $)) /\left(.5^{*} 11+\mathrm{C}(\right.$ read $\left.)\right)=(.5+1) /\left(.5^{*}\right.$ $11+3)=1.5 / 8.5=.1765$
$\mathrm{P}($ Dick \mid Moby $)=(.5+\mathrm{C}($ Moby Dick $)) /\left(.5^{*} 11+\mathrm{C}(\right.$ Moby $\left.)\right)=(.5+1) /\left(.5^{*}\right.$ $11+1)=1.5 / 6.5=.2308$
$\mathrm{P}(</ \mathrm{s}>\mid$ Dick $)=(.5+\mathrm{C}($ Dick $</ \mathrm{s}\rangle)) /\left(.5^{*} 11+\mathrm{C}<\mathrm{s}>\right)=(.5+1) /\left(.5^{*} 11+\right.$ $3)=1.5 / 8.5=.1765$
$\mathrm{p}^{\prime}($ Cher read Moby Dick $)=$
$\mathrm{p}($ Cher $\mid<s>) \times \mathrm{p}($ read \mid Cher $) \times \mathrm{p}($ Moby \mid read $) \times \mathrm{p}($ Dick | Moby $) \times$ $p(</ s>\mid$ Dick $)=.5 / 8.5 \times .5 / 6.5 \times 1.5 / 8.5 \times 1.5 / 6.5 \times 1.5 / 8.5=3.25 e^{-5}$

Held-Out Estimator

- How much of the probability distribution should be reserved to allow for previously unseen events?
- Can validate choice by holding out part of the training data
- How often do events seen (or not seen) in training data occur in validation data?
- Held-out estimator by Jelinek and Mercer (1985)

Held-Out Estimation

- Held-out estimator, define

$$
\begin{aligned}
& \left(C^{n}\left(w_{1}^{n}\right)\right)=\sum_{\left\{w_{1}^{n}: C_{\text {trin }}^{n}\left(w_{1}^{n}\right)=r\right\}} 1 \\
& T^{n}(r)=\sum_{\left\{w_{1}^{n}: C_{\text {tain }}^{n}\left(w_{1}^{n}\right)=r\right\}}\left[C_{\text {ho }}\left(w_{1}, \ldots, w_{n}\right)\right]
\end{aligned}
$$

- Then using equivalent class of r occurrences

$$
p_{\mathrm{ho}}\left(w_{1}, \ldots, w_{n}\right)=\frac{T^{n}(r) /\left(C^{n}\left(w_{1}^{n}\right)\right)^{r}}{C(\text { total })} \quad \text { where } \quad C\left(w_{1}^{n}\right)=r
$$

Testing Models

- Divide data into training and testing sets.
- Training data: divide into normal training plus validation (smoothing) sets: around 10\% for validation (fewer parameters typically)
- Testing data: distinguish between the "real" test set and a development set.
- Use a development set prevent successive tweaking of the model to fit the test data
- ~ $5-10 \%$ for testing
- useful to test on multiple sets of test data in order to obtain the variance of results.
- Are results (good or bad) just the result of chance? Use t-test

Deleted Estimation

- Use data for both training and validation

Divide training data into 2 parts
(1) Train on A, validate on B
(2) Train on B, validate on A

Combine two models
\square A B

Model $1+\quad$ Model 2
Final Model

Cross-Validation

Two estimates:

$$
P_{h o}=\frac{T_{r}^{01}}{N_{r}^{0} N} \quad P_{h o}=\frac{T_{r}^{10}}{N_{r}^{1} N}
$$

$N_{r}^{a}=$ number of n-grams occurring r times in a-th part of training set
$T_{r}^{a b}=$ total number of those found in b-th part

Combined estimate:

$$
\boldsymbol{P}_{h o}=\frac{\boldsymbol{T}_{r}^{01}+\boldsymbol{T}_{r}^{10}}{N\left(N_{r}^{0}+N_{r}^{1}\right)} \text { (arithmetic mean) }
$$

Good-Turing Estimation

- Intuition: re-estimate the amount of mass assigned to n-grams with low (or zero) counts using the number of n-grams with higher counts. For any n-gram that occurs r times, we should assume that it occurs r^{*} times, where N_{r} is the number of n-grams occurring precisely r times in the training data.

$$
r^{*}=(r+1) \frac{N_{r+1}}{N_{r}}
$$

- To convert the count to a probability, we normalize the n-gram α with r counts as:

$$
P_{G T}(\alpha)=r^{*} / N
$$

Good-Turing Estimation

- Note that N is equal to the original number of counts in the distribution.

$$
N=\sum_{r=0}^{\infty} N_{r} r^{*}=\sum_{r=0}^{\infty} N_{r+1}(r+1)=\sum_{r=0}^{\infty} N_{r} r
$$

- Makes the assumption of a binomial distribution, which works well for large amounts of data and a large vocabulary despite the fact that words and n-grams do not have that distribution.

Good-Turing Estimation (Cont.)

- N-grams with low counts are often treated as if they had a count of 0 .
- In practice r^{*} is used only for small counts; counts greater than $k=5$ are assumed to be reliable: $r^{\star}=r$ if $r>k$; otherwise:

$$
r^{*}=\frac{\frac{(r+1) N_{r+1}}{r N_{r}}-\frac{(k+1) N_{k+1}}{N_{1}}}{1-\frac{(k+1) N_{k+1}}{N_{1}}}, \text { for } 1 \leq r \leq k
$$

Good-Turing Estimation (Cont.)

- Based on count equivalent class as r.v.
- Define an adjusted count (another r. v.)

$$
r^{*}=(r+1) \frac{E(C(X)=r+1)}{E(C(X)=r)}
$$

- Good-Turning Estimator

$$
\begin{gathered}
p_{\mathrm{GT}}\left(w_{1}^{n}\right)=\frac{r^{*}}{C(\text { total })}=\frac{(r+1)}{C(\text { total })} \frac{S(r+1)}{S(r)} \quad C\left(w_{1}^{n}\right)=r>0 \\
p_{\text {GT }}\left(w_{1}^{n}\right) \approx \frac{C(r=1)}{C(\text { total }) * C(r=0)}
\end{gathered}
$$

- $\quad S(r)$ is some estimator of the expectation
- All new counts try to improve estimation in the case of sparse training data set

Discounting Methods

- Absolute discounting: Decrease probability of each observed n-gram by subtracting a small constant when $C\left(w_{1}, w_{2}, \ldots, w_{n}\right)=r$:

$$
p_{a b s}\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\left\{\begin{array}{l}
(r-\partial) / N, \text { if } r>0 \\
\frac{\left(B-N_{0}\right) \partial}{N_{0} N}, \text { otherwise }
\end{array}\right.
$$

- Linear discounting: Decrease probability of each observed n-gram by multiplying by the same proportion when $C\left(w_{1}, w_{2}, \ldots, w_{n}\right)=r$:

$$
p_{\operatorname{lin}(}\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\left\{\begin{array}{l}
(1-\alpha) r / N, \text { if } r>0
\end{array}\right.
$$

Combining Estimators: Overview

- If we have several models of how the history predicts what comes next, then we might wish to combine them in the hope of producing an even better model.
- Some combination methods:
- Katz's Back Off
- Simple Linear Interpolation
- General Linear Interpolation

Combining Estimators

- Combination over same or different corpora Linear interpolation of trigrams
$\tilde{p}\left(w_{n} \mid w_{n-1}, w_{n-2}\right)=\lambda_{1} p_{1}\left(w_{n}\right)+\lambda_{2} p_{2}\left(w_{n} \mid w_{n-1}\right)+\lambda_{3} p_{3}\left(w_{n} \mid w_{n-1}, w_{n-2}\right)$ where $0 \leq \lambda_{1} \leq 1$ and $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$
- More extended Linear Interpolation:

$$
\begin{aligned}
& \tilde{p}(w \mid h)=\sum_{i=1}^{H} \lambda_{i} p_{i}(w \mid h) \quad h \text {-history } \\
& \text { where } 0 \leq \lambda_{i} \leq 1 \text { and } \sum_{i=1}^{H} \lambda_{i}=1
\end{aligned}
$$

Backoff

- Back off to lower order n-gram if we have no evidence for the higher order form. Trigram backoff:

$$
\begin{aligned}
& \left\{\begin{array}{l}
P\left(w_{i} \mid w_{i-2}^{i-1}\right) \text {, if } C\left(w_{i-2}^{i}\right)>0
\end{array}\right. \\
& P_{\text {bo }}\left(w_{i} \mid w_{i-2}^{i-1}\right)=\left\{\alpha_{1} P\left(w_{i} \mid w_{i-1}\right) \text {, if } C\left(w_{i-2}^{i}\right)=0 \text { and } C\left(w_{i-1}^{i}\right)>0\right. \\
& \alpha_{2} P\left(w_{i}\right) \text {, otherwise }
\end{aligned}
$$

Katz's Back Off Model

- If the n-gram of concern has appeared more than k times, then an n-gram estimate is used but an amount of the MLE estimate gets discounted (it is reserved for unseen n-grams).
- If the n-gram occurred k times or less, then we will use an estimate from a shorter n-gram (back-off probability), normalized by the amount of probability remaining and the amount of data covered by this estimate.
- The process continues recursively.

Katz's Back Off Model (Cont.)

- Katz used Good-Turing estimates when an n gram appeared k or fewer times.

$$
P_{b_{o}}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\left\{\begin{array}{l}
\left(1-d_{w_{i-n+1}^{i-1}}^{i-1}\right) \frac{\mathrm{C}\left(w_{i-n+1}^{i}\right)}{\mathrm{C}\left(w_{i-n+1}^{i-1}\right)}, \text { if } C\left(w_{i-n+1}^{i}\right)>k \\
\alpha_{w_{i-n+1}^{i-1}}^{i-1} P_{b o}\left(w_{i} \mid w_{i-n+2}^{i-1}\right), \text { otherwise }
\end{array}\right.
$$

Problems with Backing-Off

- If bigram $\left(w_{1} w_{2}\right)$ is common, but trigram $\left(w_{1} w_{2} w_{3}\right)$ is unseen, it may be a meaningful gap, rather than a gap due to chance and scarce data
- i.e., a "grammatical null"
- In that case, it may be inappropriate to back-off to lower-order probability

Linear Interpolation

- One way of solving the sparseness in a trigram model is to mix that model with bigram and unigram models that suffer less from data sparseness.
- This can be done by linear interpolation (also called finite mixture models). When the functions being interpolated all use a subset of the conditioning information, this method is referred to as deleted interpolation.
- The weights can be set using the Expectation-

Maximization (EM) algorithm.

$$
P_{l i}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=
$$

$$
\lambda_{1} P_{1}\left(w_{i}\right)+\lambda_{2} P_{2}\left(w_{i} \mid w_{i-1}\right)+\lambda_{3} P_{3}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)
$$

General Linear Interpolation

$$
P_{l i}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\sum_{k=1}^{n} \lambda\left(w_{i-k+1}^{i-1}\right) P_{k}\left(w_{i} \mid w_{i-k+1}^{i-1}\right)
$$

$$
\text { where } 0 \leq \lambda\left(w_{i-k+1}^{i-1}\right) \leq 1 \text {, and } \sum_{k} \lambda\left(w_{i-k+1}^{i-1}\right)=1
$$

- In simple linear interpolation, the weights are just a single number, but one can define a more general and powerful model where the weights are a function of the history
- Need some way to group or bucket lambda histories

Deleted Interpolation Estimation

- Deleted interpolation estimator
$p_{\mathrm{del}}\left(w_{1}^{n}\right)=\mu_{1} p_{\mathrm{ho}}^{12}\left(w_{1}^{n}\right)+\left(1-\mu_{1}\right) p_{\mathrm{ho}}^{21}\left(w_{1}^{n}\right) \quad$ or
$p_{\text {del }}\left(w_{1}^{n}\right)=\left[\left(T^{n}(r)\right)^{12}+\left(T^{n}(r)\right)^{21}\right] /\left\{C(\right.$ total $\left.)\left[\left(C^{n}\left(w_{1}^{n}\right)^{r}\right)^{1}+\left(C^{n}\left(w_{1}^{n}\right)^{r}\right)^{2}\right]\right\}$
- Leaving-one-out (Jackknife example)
- held-out one sample at a time (many splits)
- average over all estimates to reduce variance (done often is estimating spectral densities)

Katz's Backing-Off Estimators

$$
\begin{gathered}
p_{\mathrm{bo}}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\left\{\begin{array}{cc}
\left(1-\alpha_{i-n+1}^{i-1}\right) * C\left(w_{i-n+1}^{i}\right) / C\left(w_{i-n+1}^{i-1}\right) & C\left(w_{i-n+1}^{i-1}\right)>k \\
\alpha_{i-n+1}^{i-1} p_{\mathrm{bo}}\left(w_{i} \mid w_{i-n+1}^{i-1}\right) & \text { otherwise }
\end{array}\right. \\
p_{\mathrm{bo}}\left(w_{3} \mid w_{1}^{2}\right)=\left\{\begin{array}{cc}
\left(1-\alpha_{1}^{2}\right) * C\left(w_{1}^{3}\right) / C\left(w_{1}^{2}\right) & C\left(w_{1}^{2}\right)>k(k=0 \text { or } 1) \\
\alpha_{1}^{2} p_{\mathrm{bo}}\left(w_{3} \mid w_{1}^{2}\right) & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

- Arguably simple, but quite effective
- N -gram is discounted by some amount so that some reserved counts can be used for unseen ones whose probabilities are estimated by backoff, e.g. unseen trigrams estimated by bigrams
- Discount can be done with Good-Turing estimator

Summary

- Today's Class
- N-gram estimation on Feb 3 and Feb. 5
- Lab2 assigned on Jan. 29, due on Feb. 10
- Next Class
- Project discussion
- Word Sense Disambiguation
- Reading Assignments
- Manning and Schutze, Chapter 6

