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Corpora: New Tools for Language Research
• LDC (USA): http://www.ldc.upenn.edu

– WSJ (your exercise so far)
– Spanish Gigaword
– English Gigaword

• ELRA (Europe): http://www.elra.info
• ICAME: http://icame.uib.no
• OTA: http://ota.ahds.ac.uk
• Brown Corpus: PoS Tagging

– http://dingo.sbs.arizona.edu/~hammond/ling696f-sp03/browncorpus.txt
– http://www.comp.leeds.ac.uk/amalgam/tagsets/brown.html
– http://www.edict.com.hk/textanalyser/wordlists.htm
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Machine Learning Toolkits
• Netlab : neural network and Gaussian process (matlab code)

– http://www.ncrg.aston.ac.uk/netlab/over.php
• HTK and GMTK: speech modeling kits

– http://htk.eng.cam.ac.uk/ (HTK)
– http://ssli.ee.washington.edu/~bilmes/gmtk/ (GMTK)
– http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html (Bayes

Net Toolbox)
• CMU AI Repository

– http://www.cs.cmu.edu/afs/cs/project/ai-
repository/ai/areas/learning/systems/0.html

• JMLR machine learning open source software
– http://jmlr.csail.mit.edu/mloss/

• R: http://www.r-project.org/
– A free alternative to S-Plus developed at Bell Labs
– If you know C, you will be right at home with R

• Weka: data mining tool in Java
– http://www.cs.waikato.ac.nz/ml/weka/
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Roles of a Corpus
• Like survey data, it becomes a key to language research
• Raw data: plenty of them, copy right issues

– Purposes for the data collection
– Enough data to meet research and modeling requirements? 
– Balanced or biased samples? What is representative?
– Side information: sources of the data (speakers and writers), 

means the data is collected, environments in which the data is 
collected, minimum dispute on the transcription of data

• Meta data: tagging information, data markup
– Additional “ground truth” depending on needs, e.g. PoS tags
– How are the tags assigned? Are them completely defined?
– Who provides the tagging? Expert training required? Any 

consistency across tagging sessions? Any potential dispute?
– How to minimize observation noise? Data Variability?
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Properties of Text Data
• Programming environment and concerns

– What is the best programming language? Perl, Python, C?
– What is the best text editor: TextPad
– Unix provides plenty of command line tools: grep, wc, awk
– Other useful data structure: tree, heap, hash, table
– Issues with programming efficiency: memory vs. time, 
– Problem with overflow: large vector sizes, model complexity
– Problem with underflow: small probabilities, data transformation

• Count information: a basis for estimating probabilities
– Unobserved events: plenty in bigrams, common in trigrams
– Equivalent classes: make counting more general 
– Mismatches in training and testing conditions

• Missing data or description in training but needed in testing
• Garbage collection (filler) units to “fill in the blank”
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Collocation of Linguistic Events
• Collocation: an expression consisting of two or more 

events (e.g. words) to mean something
– Conventional and idiomatic, e.g. broad not bright daylight
– Frequency (raw count) as a way to signifying collocation

• Table 5.1: Raw counts of some consequent works
• Table 5.2: Some useful tagging patterns

– (A N), (N N), (A A N), (A N N), (N A N), (N N N), (N P N)
• Table 5.3: Justeson and Katz’s PoS filter

– Searching for the longest sequences that fits one of the PoS
patterns

– Non-compositional phrases: “last year”, “last week”, “first time”
• Table 5.4: top 20 nouns after “strong” and “powerful”

– New York Times and other text sources
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Some Useful Statistics for Collocation
• Sample mean, variance and standard deviation (s.d.)
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• Table 5.5: finding collocations based on simple statistics
– Mean distance between the words “New” and “York” is 0.43
– Mean distance between the words “editorial” and “Atlanta” is 4.03
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Sampling Distributions (I)
• For many applications, it is important to obtain the 

distribution of a sample statistic. We need to watch for 
assumptions about the random samples before we work 
out sample distributions.
– realize what’s known and unknown

• Example 1: Normalized Sample Mean
– independent Gaussian samples with known variance

– note: Z can not be defined if we don’t know the parameters
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Sampling Distributions (II)
• Example 2: Normalized Sample Mean

– independent Gaussian samples with unknown variance

• The pdf of T (assuming v=n-1) is of the form

– for large value of v, we have an approximate Gaussian

2 2

ˆ ˆ- -=  has a '  t-distribution with n-1 degrees of freedom
/ / 1

X X X XT Student s
S n S n

=
−%

1
2

21
2

2

( )( ) (1 )   (Figure 4-2, 1,  ( ) is the Gamma function)
( )

vv

T v

tf t v v
vvπ

+
+

−Γ
= + = Γ

Γ

( 1) ( ),  ( 1) ! (integer ), (2) (1) 1, (1/2)v v v k k k πΓ + = Γ Γ + = Γ =Γ = Γ =



10 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Spring 2009

Some Useful Plots for Collocation
• Bar charts for position of words wrt another word

– Figure 5.2a: “strong” vs. “opposition”:
– Figure 5.2b: “strong” vs. “support” (below):
– Figure 5.2c: “strong” vs. “for”:
– Variability indication and collocation discovery
– Terminology extraction with collocation statistics
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Statistical Hypothesis Testing (I)
• In essence, a hypothesis test partitions the entire 

observation space into two disjointed sets, CC and D
• If an observation X lies in the region CC, we reject H0; if 

X is in D, we accept H0. C is called the critical region 
(rejection region), often defined by critical values as 
discussed earlier

• Type I error (also called false rejection error) of a test:

– Level of significance is the same as the size of critical region

• Type II error (also called false alarm error) of a test:

1 0P( ) P( | )  level of significanceE X C Hα = = ∈ ⇒

2 1 1P( ) P( | ) 1 P( | ) 1E X D H X C Hβ γ= = ∈ = − ∈ = −
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Statistical Hypothesis Testing (II)
• In statistics, we normally need test a hypothesis based on 

some observation data. The problem is formulated as a test 
between two complementary hypotheses:

– H0: null hypothesis

– H1: alternative hypothesis

• Example: Given                      as a random sample from a 
Gaussian distribution             , where variance       is known. 
We need to verify whether its mean is a given value. Thus we 
do hypothesis testing:

– against
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Statistical Hypothesis Testing (III)
NeymanNeyman Pearson LemmaPearson Lemma: 

For a simple H0 and simple H1, if the distributions under both 
H0 and H1 are known, i.e., f0(X|θ0) and f1(X|θ1). Given any 
i.i.d. observation data X={X1,…,XT}, for any significance 
level α, the most powerful test is formulated as:
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The threshold     is adjusted to make the significance of the test to be α.
If the both pdf’s have the same form, the only difference is parameters, 
The ratio is also called likelihood ratio (LR).
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Statistical Hypothesis Testing (IV)
• The Neyman-Pearson Lemma provides a way to construct 

most powerful tests for simple hypotheses when the class 
distributions is known except for the parameter values

• How about if the hypothesis is composite 
• Likelihood Ratio Test (LRT): assume the distributions are 

known except some parameters,

– LRT is not uniformly most powerful
– Distribution of T is complicated
– Widely used for many practical applications
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Distributions of Test Statistic T
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Evaluating Hypothesis Testing (I)
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Evaluating Hypothesis Testing (II): ROC 
(Receiver Operating Characteristic) Curve
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Bernoulli Trials and Applications
• Binary Events:

• How about k successes in n independent trials?
– How many such possibilities: binomial coefficient
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The t Test for Collocation Discovery
• Definition: t-statistic (testing against known mean)

N
S

Xt
2

μ−
=

• An example: test of independence
– P(“new”)=15828/N, P(“company”)=4675/N, N=14307668
– H0: p=P(“new company”)= P(“new”)*P(“company”)=0.0000003615, 

a binomial distribution with mean=p, and variance=p(1-p)
– Sample mean= 8/N
– t=0.999932, nor larger than the critical value of 2.576 at a 

significance level of 99.5%
– Cannot reject the null hypothesis
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The t Test for Difference Discovery
• Definition: t-statistic (assuming the known difference is 0)
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Confidence Intervals
• Sample mean : a point estimate related to sample size

– How about an interval estimate? How to choose n?

• q-percent confidence interval: e.g. quartile, median
– Example: sample mean for Gaussian samples, known variance
– For the sample mean:

• Confidence interval for other statistics can also be 
established if the distribution of the point estimate of 
interest can be evaluated (e.g. t-distribution).

ˆ( / / ) / 100P X k n X X k n qσ σ− < < + =

[ / ,  / ]X k n X k nσ σ− +
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One-Sided Test: An Example
• Testing of known Gaussian mean (known variance)

• Higher confidence level implies large acceptance region
– a higher level of significance       implies a more severe test

• T-test: for smaller sample sizes (known variance)

If ( ) 0.99 2.33,  we reject the hypothesis 300 with 99% confidence
and if ( ) 0.995 2.575,  we accept the hypothesis 300 with 99.5% confidence

c c

c c

C z z X
C z z X
= ⇒ = − =

= ⇒ = − =

Test statistic [ ] /[ / ] [290 300] /[40 / 100] 2.5z x X nσ= − = − = −

Accept 300 if  with confidence ( ) ( ) 1 ( ) or significance 1- ( )
c

c c c cz
X z z C z f z dz z C zα

∞
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Two-Sided Test: An Example
• Testing of known Gaussian mean (known variance)

• T-test: for smaller sample sizes (known variance)

– small sample test is not as severe as a large sample one

• Critical Value:      and     are critical values of the tests

If ( ) 0.95 1.96 (Table 4-1),  we reject the hypothesis 10 with 95% confidencec cC z z X= ⇒ = =

Test statistic [ ] /[ / ] [10.3 10] /[1.2 / 100] 2.5z x X nσ= − = − =
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If ( ) 0.95 (8) 2.306 (Table 4-2),  we accept the hypothesis 10 with 95% confidencec cC t t X= ⇒ = =

cz ct
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One- and Two-Sided Tests: Summary

One-sided (one-tailed) Test

• Large-sample test statistic:

• Small-sample test statistic:

• Region of Rejection
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Two-sided (two-tailed) Test

• Large-sample test statistic:

• Small-sample test statistic:

• Region of Rejection
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Chi-Square Distributions
• Chi-Square: sum of square iid N(0,1) random variables

• Implications: with proper normalization
– Power random variable W is 
– Squared Rayleigh random variable        is 
– Squared Maxwell random variable        is
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Pearson’s Chi-Square Test
• Definition: X-square statistic (testing of variances)
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• An example: Table 5.8 (2x2 table)
– H0: P(“new company”)= P(“new”)*P(“company”)
– Show the above as indicated in Exercise 5.9
– A X-square value of 1.55 is too small compared to the critical value

of 3.841 at a significance level of 95% (chi-square distribution with 
one degree of freedom for a 2x2 table)

– Cannot reject the null hypothesis the two words are independent
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Likelihood (Probability) Ratio Test
• Definition: LR-statistic or log LR (LLR-statistic)
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• An example: binomial distribution for H0 and H1
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Log Likelihood Ratio Test
• Definition: LLR-statistic, asymptotically chi-square
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• Table 5.12: “computers” is more likely to follow 
“powerful” than other words 1.3*10**18

• Table 5.13: relative frequency ratio
– Comparing general text with subject-specific text corpora
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Correlation between Two Sets of Data
• Linear correlation coefficient (Pearson’s r)

• Pearson’s r approaches Gaussian for large n
– significance of the value of r: small r is often meaningless unless 

the sample size n is large, and f(x, y) is known
– large r implies a tighter coupling between X and Y
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Curve Fitting
• Consider fitting y=r(x) to a set of pairs of random 

samples:
– we will have curve fitting errors: d(i)
– r(.) is a regression function
– goodness of fit: minimizing least squared errors

• Polynomial fitting (MATLAB example):
• Linear fitting: y=a+bx
• Spline fitting

– local and global optimization
– various optimization criteria
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Linear Regression
• Least Squares: Minimizing Sum of Squared Error

• We obtain the following matrix normal equation

• Solving for intercept a and slope b : y=polyfit(y,x,n)

• Extend to more than one regressor (econometrics)
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Mutual Information
Definition :

Note: Eqs. (5.11)-(5.13) are point-wise mutual information i(.)
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Point-wise Mutual Information
• Point-wise MI: the amount of information provided by 

the occurrence of the event represented by “y” about 
the occurrence of the event represented by “x”

)(
)|(log),(

xP
yxPyxi =

• i(“Ayatollah”, “Ruhollah”) = 18.38 bits (Table 5.14)
• Table 5.15: collocation of “strength” and “power”

– Larger corpus gives better estimate of mutual information
– Many word pair only occurs once even in large corpora
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Other Topics of Interest
• We did not have time to cover the following:

1. Comparing two samples means (mean difference): 
for sampling distributions, confidence interval  and 
hypothesis testing

2. Multiple Regression (macroeconomics)
3. Autoregression: Time Series (econometrics)
4. Parameter Estimation
5. Decision Theory

• Basic skills learned here can be applied to
– The above and many other problems



35 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Spring 2009

Summary
• Today’s Class

– Corpus-based work and collocation
• Some useful statistics for collocation evaluations
• Statistical hypothesis testing: a useful tool

– Lab1 due on Jan. 27
• Next Classes

– N-gram estimation (Jan. 29 and Feb. 4)
• Reading Assignments

– Manning and Schutze, Chapters 3, 4, 5 & 6
– Reading M&S is critical because of the examples cited
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