ECE8813 Statistical Natural Language Processing

Lecture 5: Linguistics Fundamentals

Chin-Hui Lee

School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, GA 30332, USA chl@ece.gatech.edu

Entropy of English (Shannon, 1951)

Model	Cross Entropy (bits)	Comments
Zeroth order	4.76	uniform letter log(27)
First order	4.03	unigram
Second order	2.8	bigram
Shannon's 2 nd Experiment	1.34	human prediction

C. E. Shannon, "Prediction and Entropy of Printed English", *Bell System Technical Journal*, Vol. 30, pp. 50-64, 1951.

Lab1 : Probabilities of Letters

- Markov Approximation to Probability of Letters $P(L) = P(l_1)P(l_2 | l_1) \cdots P(l_{|L|} | l_1, \dots, l_{|L|-1}) \quad k - gram$ $\approx P(l_1)P(l_2 | l_1) \cdots P(l_k | l_1, \dots, l_{k-1}) \prod_{i=k+1}^{|L|} P(l_i | l_{i-1}, l_{i-2}, \dots, l_k)$
- Cross Entropy between true p(x) and model q(x) $H(X,q) \equiv H(X) + D(p(x) || q(x)) = -\sum_{x \in X} p(x) \log_2 q(x) = E_p[\log_2 \frac{1}{q(X)}]$
- Perplexity $H(X,q) \approx \log_2(\text{Perp}(X))$
- Lab1: simulate Shannon's study on English letters
 Do it for 1000 and 10000 sentences, any difference?

Linguistic Units

- Fundamental Units
 - Alphabet, letter
 - Characters (e.g. Chinese)
- Word: dictionary, lexicon
 - Stem (lexeme): morphology, inflection form (prefix/suffix)
 - Part-of-speech (PoS): eight major groups
 - Word sense disambiguation: words with multiple senses
- Phrase
- Sentence and Grammar
- Paragraph
- Articles (documents): topics and stories
- Syntax, semantics, and pragmatics
- Language-specific properties: Multilingual issues

Part of Speech and Morphology

- Syntactic and Semantic Categories
 - Words that show similar syntactic behavior (semantic type)
 - Often known as PoS (noun, adjective, verb, etc.)
- Open vs. closed lexical categories
 - Class with new words added: open
 - Class with often fixed vocabulary: functional words, closed
- Part-of-speech
 - Brown Corpus (a useful corpus with PoS tags)
 - Noun, pronoun, determiner, adjective, adverbs, particles, propositions, conjuction, complementizer, and others
- Language-specific properties: Multilingual issues

Phrase Structure

- Syntax and word order
 - "I want to go to a movie tomorrow." (English vs. Chinese)
- Constituents and phrases: equivalent classes
 - Noun phrases
 - Verb phrases
 - Prepositional phrases
 - Adjective phrases
- Phrase structure grammars
 - Start symbols and derivation (rewrite) rules
 - Terminal vs. non-terminal nodes
 - Local vs. global parse trees
 - Dependency: arguments and adjuncts
- Semantics (meaning) and pragmatics
- Language-specific properties: Multilingual issues

Formal Grammar Specification

- Grammar $G = \{A, I, S, D\}$ and Language L(G)
 - G is defined by an alphabet set A, an intermediate set I, a root symbol
 S, and a set of derivation (production) rules D
 - -L(G) is the language of the set of sentences generated by G
- Type of String Grammars
 - Type 0: free or unrestricted
 - Type 1: context-sensitive

 $D = \{ \alpha \theta \beta \to \alpha \psi \beta \} \quad \theta \in I \quad \psi \in I \cup A \quad \alpha, \beta : \text{string}$

- Type 2: context-free

 $D = \{\theta \rightarrow \psi\} \quad \theta \in I \quad \psi \in I \cup A$

- Type 3: finite state or regular $D = \{\alpha \rightarrow z\beta, \alpha \rightarrow z\}$ $\alpha, \beta \in I$ $z \in A$
- Chomsky Normal Form (CNF)
 - a context-free language can be replaced by another language in CNF

An Example of FSG (Specified by Terminal Symbols)

An Example of FSG (Specified by Non-Terminal Symbols)

How to pronounce a six digit sequence?

- Alphabet terminal set: A = {one, two, ..., ten, eleven, ..., twenty, ..., ninety, hundred, thousand}
- Non-terminal (intermediate) set: I = {digit6, digit3, digit2, digit1, teens, tys}

FSG Derivation Rules with Non-Terminals)

8 Rewrite (Derivation) rules with root S = digit6

 $D = \begin{cases} digit 6 \rightarrow digit 3 & thousand & digit 3 \\ digit 6 \rightarrow digit 3 & thousand & OR & digit 3 \\ digit 3 \rightarrow digit 1 & hundred & digit 2 \\ digit 2 \rightarrow teens & OR & tys & OR & tys & digit 1 & OR & digit 1 \\ digit 1 \rightarrow one & OR & two & OR & ... & OR & nine \\ teens \rightarrow ten & OR & eleven & OR & ... & OR & nineteen \\ tys \rightarrow twenty & OR & thirty & OR & ... & OR & ninety \end{cases}$

Language, Grammar and Parsing

- Language generation rules
- Parsing: Given a test string x in a language, find a sequence of derivation rules that leads to x
 - *Recognition:* testing if x is in L(G) by parsing (debuggling)
 - Generation: forming a derivation from the root to a sentence
 - Parsing is a way to derive <u>structures</u> of a language
- Cocke-Younger-Kasami (CYK) Algorithm
 - Starting with the testing sentence x, find rewrite rules whose right-hand side matches with part of the current string
 - Replace the string with a segment that could have produced it
 - Generate a *parse table* from the bottom up (*bottom-up parsing*)
 - Continue the process until reaching the root symbol
 - Express the grammar in CNF before parsing

Other Parsing Strategies

- Top-down parsing
 - with some constraints, e.g. the left symbol)
- Specific strategies for specific grammars
 - e.g. Viterbi algorithm for FSG (left-to-right parsing)
 - e.g. inside-outside parsing for CSG
 - Forward-backward algorithm for computing probabilities
- Statistical Parsing without grammatical rules
 - the Lancaster housewife example (recent revolution)
 - statistical translation (from IBM to Aachen to Google)

Bottom-Up Parsing

An Illustration Example

- A={a,b}, I={X,Y,Z}, S, D={d1,d2,d3,d4}={d1: S=>XY OR YZ; d2: X=>YX OR a; d3: Y=>ZZ OR b; d4: Z=>XY OR a}
- x="baaba"="x1, x2, ..., xn"
- Dividing the candidates into smaller substrings
- Three search loops, complexity O(n*n*n)
- Rule sequence: {d1,d2,d3,d4,d3,d2,d2,d3,d4}

Chart Parsing

ECE8813, Spring 2009

HMM Definition and Parameters

• HMM is a probabilistic regular grammar (PRG) $P(W \mid G) = \sum_{t} P(w_1, \dots, w_Q \mid t) P(t) = \sum_{t} \pi_{X_0} \prod_{t=1}^{T} a_{X_{t-1}X_t} b_{X_t s_t}$

Initial prob. : Transition prob. : State prob. :

$$\pi = (\pi_1, \dots, \pi_N)$$

$$A = (a_{ij}) \quad 1 \le i \le N \quad 1 \le j \le N$$

$$B = (b_{ik}) \quad 1 \le j \le N \quad 1 \le k \le K$$

Hidden Markov Models

Center of Signal and Image Processing Georgia Institute of Technology

ECE8813, Spring 2009

HMM Computation and Inference

- Problem 1: Evaluation
 - How to compute P(W|G) efficiently?
 - Computing forward and backward probabilities over strings of certain length according to RPG derivation rules
- Problem 2: Decoding
 - Viterbi: finding the most likely derivation sequence
 - Derivation is always left to right (first to the last word)
- Problem 3: Parameter Estimation (Learning)
 - Given a set of observations *W*, determine the unknown values of the set of parameters

HMM: An Occasionally Dishonest Casino

- Assume: A casino switches occasionally to a biased dice to increase winning odds !!
- Can we model it with HMM ?
- How do we prove it cheats ?
- Can we estimate the HMM ?
- How many samples needed ?
- Which dice used at what time?

Estimation: More vs. Less Data

Properties of PCFG (for Reference)

Place Invariance

 Probability of a subtree does not depend on where in the sentence it dominates (spanning from *p* to *q*)

 $P(I_j(w_k,...,w_{k+c}) = I_j(k,k+c) \rightarrow H_i)$ same $\forall k,i,j$

- Same as in HMM for time invariance
- Context-Free
 - Probability of a subtree does not depend on words it does not dominates (spanning from *p* to *q*)

 $P(I_i(k,l) \rightarrow H_i | \text{outside} - \text{words}) = P(I_i(k,l) \rightarrow H_i)$

Ancestor-Free

Probability of a subtree does not depend on any derivation outside the subtree (spanning from *p* to *q*)

 $P(I_j(k,l) \rightarrow H_i | \text{outside} - \text{subtrees}) = P(I_j(k,l) \rightarrow H_i)$

Probabilistic Context Free Grammar (PCFG)

$$G = \{A, I, S, D, P(D)\} \quad A = \{w_1, \dots, w_V\}$$

$$I = \{I_1, \dots, I_Q\} \quad \text{with} \quad S = I_1$$

$$D = \{I_i \rightarrow H_j\} \quad \text{with} \quad j = 1, \dots, J_i$$

$$\forall i \quad \sum_{j=1}^{J_i} P(I_i \rightarrow H_j) = 1 \quad H_j = \text{symbol-sequence}$$

- Probability of a word sequence W according to G $P(W|G) = P(w_1^M | G) = \sum_t P(w_1^M | t)P(t) \quad t: \text{parse-tree}$
- Probability of a parse tree (score and compare) $P(t) = P(d_1^L) = \prod_{j=1}^L P(d_j) \quad d_j$: parse-tree-rule

PCFG Computation and Inference

- Problem 1: Evaluation
 - How to compute P(W|G) efficiently?
 - Computing inside and outside probabilities
 - *inside-outside* algorithm for re-estimation
- Problem 2: Decoding
 - Viterbi algorithm: finding the most likely parse tree which also implies the most likely derivation sequence
 - Bayes Theorem: $\hat{t} = \operatorname{argmax}_{t} P(t | W) = \operatorname{argmax}_{t} P(W | t) P(t)$
- Problem 3: Parameter Estimation (Learning)
 - Given a set of observations *W*, determine the unknown values of the set of parameters (much more involved)

$$\theta = \{a_{ji} = P(I_j \rightarrow H_i): 1 \le i \le J_i, 1 \le j \le Q\}$$

Center of Signal and Image Processing Georgia Institute of Technology

• Countable State HMM (instead of finite state HMM)

Problem Mapping of POS Tagging

- Finite state network (FSN) representation
 - State (node) space: the set of tags
 - Arc: tag transition (probabilities)
 - State output: tag-specific word probabilities
 - State-sequence: tag sequence
- An example:

The representative put chairs on the table.

Statistical POS Tagging

- Bigram tag language model approximation $P(T) = P(t_1^Q) \approx \prod_{q=1}^Q P(t_q \mid t_{q-1}) \quad P(t_1 \mid t_0) = 1$
- Localized tag-specific language model $P(W | T) = P(w_1^{Q} | t_1^{Q}) \approx \prod_{q=1}^{Q} P(w_q | t_1^n) \approx \prod_{q=1}^{Q} P(w_q | t_q)$ Overall approximation

 $\hat{t}_{1}^{Q} = \arg \max_{T} P(W | T) P(T) \approx \arg \max_{t_{1}^{Q}} \prod_{q=1}^{Q} P(w_{q} | t_{q}) P(t_{q} | t_{q-1})$

Problem Mapping for Text Understanding

- Finite state network (FSN) representation
 - State (node) space: the set of concepts
 - Arc: concept transition (probabilities)
 - State output: concept-specific word sequences
 - State-sequence: concept sequence (meaning expressed in sequence of semantic attributes)
- An example:

I want to flv to Boston from Dallas Friday noon on coach.

25

Statistical Concept Decoding

- Bigram concept language model approximation $P(C) = P(c_1^{Q}) \approx \prod_{q=1}^{Q} P(c_q \mid c_{q-1}) \quad P(c_1 \mid c_0) = 1$ Localized concept-specific bigram or trigram LM $P(W \mid C) = P(w_1^{Q} \mid c_1^{Q}) \approx \prod_{q=1}^{Q} P(w_1^{Q} \mid c_q) \approx \prod_{q=1}^{Q} P(w_{q-2}^{q} \mid c_q)$
- Overall approximation

 $\hat{c}_{1}^{Q} = \arg\max_{C} P(W \mid C) P(C) \approx \arg\max_{c_{1}^{Q}} \prod_{q=1}^{Q} P(w_{q-2}^{q} \mid c_{q}) P(c_{q} \mid c_{q-1})$

Grammatical Inference

- There are some techniques but the general notion of *grammatical inference* is not easily tractable
 - Usually designed by hand with human experts
 - The number of rules and language coverage are key issues
 - Corpus-based learning approaches are now being explored
 - Probabilistic approaches offer a good way to score parse trees and are capable of handling flexible grammars (*robust parsing* even with ill-formed sentences, a highly desirable property)

Language Acquisition & Inference

Problem Statement

- Given a set of sentence samples, find $G = \{A, I, S, D\}$
- Usually underspecified (few samples but too many solutions)
- A Rule-Based Strategy (Generalization?)
 - Divide sentences into positive (x+) and negative (x-) examples
 - Start with a guessing grammar G0 (e.g. from known rules)
 - Test G0 on the x+ sentences one by one, add rules if needed and make sure new rules do not part x- examples, update G0

A Grammatical Inference Example

 $U += \{a,aaa,aaab,aab\}, U -= \{ab,abc,abb,aabb\}, A = \{a,b\}, I = \{X\}, A = \{a,b\}, I = \{X\}, I =$

iter	U+	D	D => U-?
1	а	S -> X	No
		X -> a	
2	aaa	S -> X	No
		X -> a	
		X -> aX	
3	aaab	S -> X	Yes for "ab" in
		X -> a	X-, the 4 th rule
		X -> aX	needs to be
		X -> ab (-)	the 5 th rule is
		X -> aab (+)	added
4	aab	No new rules	No
		(Done !!)	

initialize $D=\{S \rightarrow X\}$

Some Issues before Moving on

- Problems with PCFG estimation
 - Many unsolved research issues: *less studied, more rewards*
 - Sizes of A and I often unknown: O(M*M*M*Q*Q*Q)
 - Too little data to estimate too many parameters
 - But we can not ignore unobserved events
 - Greater A and I imply more estimation & storage problem
 - Techniques in search, N-gram and HMM can be extended
- Parsing for disambiguation and understanding?
 - Probabilities for determining the sentence
 - Probabilities for speedier parsing (pruning efficiency)
 - Probabilities for choosing between parses (ranking/scoring)
- Labeled corpra for learning treebank and others
 - Chunking (bracketing): the first step to studying parsing
 - Penn Treebank: widely used, large size; other languages

More Issues before Moving on

- Other probabilistic grammars
 - Probabilistic left-corner grammar
 - Probabilistic dependency grammar
 - Probabilistic history-based grammar
 - Probabilistic tree-adjoining grammar
- Other learning approaches
 - Knowledge-based detailed refinement (learning from ASR)
 - Unsupervised learning how much labeling is needed?
 - Transformation-based learning (decision-feedback)
- Other search algorithms
 - stack decoding, A* search, beam search
- Other notions on parsing
 - Data-driven (non-lexicalized, non-grammatical approaches)

Summary

- Today's Class
 - Linguistics Foundations
 - formal grammars and Chomsky normal form
 - grammatical inference & language acquisition
 - probabilistic finite state grammar (PFSG)
 - probabilistic context-free grammar (PCFG)
 - Lab1 due on Jan. 23
- Next Classes
 - Class project list and corpus-based study
- Reading Assignments
 - Manning and Schutze, Chapters 2 & 3

