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Entropy of English (Shannon, 1951)
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C. E. Shannon, “Prediction and Entropy of Printed English”, 
Bell System Technical Journal, Vol. 30, pp. 50-64, 1951.
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Lab1 : Probabilities of Letters
• Markov Approximation to Probability of Letters
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Cross Entropy between true p(x) and model q(x)

Perplexity –

Lab1: simulate Shannon’s study on English letters
- Do it for 1000 and 10000 sentences, any difference?
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Linguistic Units
• Fundamental Units

– Alphabet, letter
– Characters (e.g. Chinese)

• Word: dictionary, lexicon
– Stem (lexeme): morphology, inflection form (prefix/suffix)
– Part-of-speech (PoS): eight major groups
– Word sense disambiguation: words with multiple senses

• Phrase
• Sentence and Grammar
• Paragraph
• Articles (documents): topics and stories
• Syntax, semantics, and pragmatics
• Language-specific properties: Multilingual issues
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Part of Speech and Morphology
• Syntactic and Semantic Categories

– Words that show similar syntactic behavior (semantic type)
– Often known as PoS (noun, adjective, verb, etc.)

• Open vs. closed lexical categories
– Class with new words added: open
– Class with often fixed vocabulary: functional words, closed

• Part-of-speech
– Brown Corpus (a useful corpus with PoS tags)
– Noun, pronoun, determiner, adjective, adverbs, particles, 

propositions, conjuction, complementizer, and others
• Language-specific properties: Multilingual issues



6 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Spring 2009

Phrase Structure
• Syntax and word order

– “I want to go to a movie tomorrow.” (English vs. Chinese)
• Constituents and phrases: equivalent classes

– Noun phrases
– Verb phrases
– Prepositional phrases
– Adjective phrases

• Phrase structure grammars
– Start symbols and derivation (rewrite) rules
– Terminal vs. non-terminal nodes
– Local vs. global parse trees
– Dependency: arguments and adjuncts

• Semantics (meaning) and pragmatics
• Language-specific properties: Multilingual issues
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Formal Grammar Specification
Grammar G={A, I, S, D} and Language L(G)
– G is defined by an alphabet set A, an intermediate set I, a root symbol 

S, and a set of derivation (production) rules D
– L(G) is the language of the set of sentences generated by G

Type of String Grammars
– Type 0: free or unrestricted
– Type 1: context-sensitive

– Type 2: context-free 

– Type 3: finite state or regular

Chomsky Normal Form (CNF)
– a context-free language can be replaced by another language in CNF

AzIzD ∈∈→→= γβααβγα ,,},{

string:,}{ βαψθαψβαθβ AIID ∪∈∈→=

AzIzzD ∈∈→→= βααβα ,},{
AIID ∪∈∈→= ψθψθ }{

0
2 3

1
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An Example of FSG 
(Specified by Terminal Symbols)

Uh,
Please

what is

tell me

give me checking

savings

th
e b

ala
nc

e for

in

account balance.

my

my

checking

savings account.

*

*

*

Deterministic or 
Stochastic FSG
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How to pronounce a six digit sequence?
– Alphabet terminal set: A = {one, two, … , ten, 

eleven, … , twenty, … , ninety, hundred, thousand}
– Non-terminal (intermediate) set: I = {digit6, digit3, 

digit2, digit1, teens, tys}

An Example of FSG 
(Specified by Non-Terminal Symbols)
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FSG Derivation Rules with Non-Terminals)

8 Rewrite (Derivation) rules with root S = digit6
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Language, Grammar and Parsing
Language generation rules
Parsing: Given a test string x in a language, find a 
sequence of derivation rules that leads to x
– Recognition: testing if x is in L(G) by parsing (debuggling)
– Generation: forming a derivation from the root to a sentence
– Parsing is a way to derive structures of a language

Cocke-Younger-Kasami (CYK) Algorithm
– Starting with the testing sentence x, find rewrite rules whose 

right-hand side matches with part of the current string
– Replace the string with a segment that could have produced it
– Generate a parse table from the bottom up (bottom-up parsing)
– Continue the process until reaching the root symbol
– Express the grammar in CNF before parsing
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Other Parsing Strategies
• Top-down parsing

- with some constraints, e.g. the left symbol)

• Specific strategies for specific grammars
- e.g. Viterbi algorithm for FSG (left-to-right parsing)
- e.g. inside-outside parsing for CSG
- Forward-backward algorithm for computing probabilities

• Statistical Parsing without grammatical rules
- the Lancaster housewife example (recent revolution) 
- statistical translation (from IBM to Aachen to Google)
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Bottom-Up Parsing
An Illustration Example
– A={a,b}, I={X,Y,Z}, S, D={d1,d2,d3,d4}={d1: S=>XY OR YZ; 

d2: X=>YX OR a; d3: Y=>ZZ OR b; d4: Z=>XY OR a}
– x=“baaba”=“x1, x2, … , xn”
– Dividing the candidates into smaller substrings
– Three search loops, complexity O(n*n*n)
– Rule sequence: {d1,d2,d3,d4,d3,d2,d2,d3,d4}

S

X Y

ZZXY

b a YX a

a b

Parse Tree
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Chart Parsing

1
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HMM Definition and Parameters

• HMM is a probabilistic regular grammar (PRG)
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Hidden Markov ModelsHidden Markov Models
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HMM Computation and Inference

• Problem 1: Evaluation
– How to compute P(W|G) efficiently?
– Computing forward and backward probabilities over 

strings of certain length according to RPG derivation rules
• Problem 2: Decoding

– Viterbi: finding the most likely derivation sequence
– Derivation is always left to right (first to the last word)

• Problem 3: Parameter Estimation (Learning)
– Given a set of observations W, determine the unknown 

values of the set of parameters
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HMM: An Occasionally Dishonest Casino

• Assume: A casino switches 
occasionally to a biased dice 
to increase winning odds !!

• Can we model it with HMM ?
• How do we prove it cheats ?
• Can we estimate the HMM ?
• How many samples needed ?
• Which dice used at what 

time?

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6:   1/2

Fair Biased

0.05

0.95 0.9

0.1
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Estimation: More vs. Less Data

1: 0.19
2: 0.19
3: 0.23
4: 0.08
5: 0.23
6: 0.08

1: 0.07
2: 0.10
3: 0.10
4: 0.17
5: 0.05
6: 0.52

0.27

0.73

0.29

0.71

1: 0.17
2: 0.17
3: 0.17
4: 0.15
5: 0.18
6: 0.16

1: 0.10
2: 0.11
3: 0.10
4: 0.11
5: 0.10
6: 0.48

0.07

0.93 0.88

0.12

Estimates with 300 rolls Estimates with 30000 rolls
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Properties of PCFG (for Reference)
Place Invariance
– Probability of a subtree does not depend on where in the 

sentence it dominates (spanning from p to q)

– Same as in HMM for time invariance

Context-Free
– Probability of a subtree does not depend on words it does not 

dominates (spanning from p to q)

Ancestor-Free
– Probability of a subtree does not depend on any derivation 

outside the subtree (spanning from p to q)

jikHckkIwwIP ijckkj ,,same)),(),,(( ∀→+=+K
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Probabilistic Context Free Grammar (PCFG)

G = {A, I, S, D, P(D)}

• Probability of a word sequence W according to G

• Probability of a parse tree (score and compare)
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PCFG Computation and Inference
• Problem 1: Evaluation

– How to compute P(W|G) efficiently?
– Computing inside and outside probabilities

• inside-outside algorithm for re-estimation

• Problem 2: Decoding
– Viterbi algorithm: finding the most likely parse tree which also 

implies the most likely derivation sequence
– Bayes Theorem:

• Problem 3: Parameter Estimation (Learning)
– Given a set of observations W, determine the unknown 

values of the set of parameters (much more involved)

• Countable State HMM (instead of finite state HMM)
}1,1:)({ QjJiHIPa iijji ≤≤≤≤→==θ

)()|(maxarg)|(maxargˆ tPtWPWtPt tt ==
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Problem Mapping of POS Tagging
• Finite state network (FSN) representation

– State (node) space: the set of tags
– Arc: tag transition (probabilities)
– State output: tag-specific word probabilities
– State-sequence: tag sequence

• An example:
The representative put chairs on the table.

AT NN ATNN NN NN

VBVB VBJJ

IN
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Noisy 
Channel

Tags T Words W

Statistical POS Tagging

Channel 
Decoding
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Problem Mapping for Text Understanding

• Finite state network (FSN) representation
– State (node) space: the set of concepts
– Arc: concept transition (probabilities)
– State output: concept-specific word sequences
– State-sequence: concept sequence (meaning  

expressed in sequence of semantic attributes)
• An example:
I want to fly to Boston from Dallas Friday noon on coach.

Req To-
City

From
-City Time Class
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Noisy 
Channel

Concept C Words W

Statistical Concept Decoding

Channel 
Decoding

Words W Concept C P(W|C): concept-specific word LM

P(C): concept language model
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Grammatical Inference
There are some techniques but the general notion 
of grammatical inference is not easily tractable
– Usually designed by hand with human experts
– The number of rules and language coverage are key 

issues
– Corpus-based learning approaches are now being 

explored
– Probabilistic approaches offer a good way to score parse 

trees and are capable of handling flexible grammars 
(robust parsing even with ill-formed sentences, a highly 
desirable property) 
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Language Acquisition & Inference
Problem Statement
– Given a set of sentence samples, find G = {A, I, S, D}
– Usually underspecified (few samples but too many 

solutions)
A Rule-Based Strategy (Generalization?)
– Divide sentences into positive (x+) and negative (x-) 

examples
– Start with a guessing grammar G0 (e.g. from known rules)
– Test G0 on the x+ sentences one by one, add rules if 

needed and make sure new rules do not part x- examples, 
update G0
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A Grammatical Inference Example

U+={a,aaa,aaab,aab}, U-={ab,abc,abb,aabb}, A={a,b}, I={X}, 

NoNo new rules
(Done !!)

aab4

Yes for “ab” in 
X-, the 4th rule 
needs to be 

removed and 
the 5th rule is 

added

S -> X
X -> a

X -> aX
X -> ab (-)

X -> aab (+)

aaab3

NoS -> X
X -> a

X -> aX

aaa2

NoS -> X
X -> a

a1
u+ D D => U-?iter

initialize D={S -> X}
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Some Issues before Moving on
• Problems with PCFG estimation

– Many unsolved research issues: less studied, more rewards
– Sizes of A and I often unknown: O(M*M*M*Q*Q*Q)
– Too little data to estimate too many parameters
– But we can not ignore unobserved events
– Greater A and I imply more estimation & storage problem
– Techniques in search, N-gram and HMM can be extended

• Parsing for disambiguation and understanding?
– Probabilities for determining the sentence
– Probabilities for speedier parsing (pruning efficiency)
– Probabilities for choosing between parses (ranking/scoring)

• Labeled corpra for learning – treebank and others
– Chunking (bracketing): the first step to studying parsing
– Penn Treebank: widely used, large size; other languages
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More Issues before Moving on
• Other probabilistic grammars

– Probabilistic left-corner grammar
– Probabilistic dependency grammar
– Probabilistic history-based grammar
– Probabilistic tree-adjoining grammar

• Other learning approaches
– Knowledge-based detailed refinement (learning from ASR)
– Unsupervised learning – how much labeling is needed?
– Transformation-based learning (decision-feedback)

• Other search algorithms
– stack decoding, A* search, beam search

• Other notions on parsing
– Data-driven (non-lexicalized, non-grammatical approaches)
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Summary
• Today’s Class

– Linguistics Foundations
- formal grammars and Chomsky normal form
- grammatical inference & language acquisition
- probabilistic finite state grammar (PFSG)
- probabilistic context-free grammar (PCFG)

– Lab1 due on Jan. 23
• Next Classes

– Class project list and corpus-based study
• Reading Assignments

– Manning and Schutze, Chapters 2 & 3
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