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Optimization Tools: An Overview
• The nature of optimization

– Determine system parameters from data based on 
some prescribed objectives which are functions of 
observed data and parameters

– Define objective functions which can be linear or 
nonlinear with single or multiple objectives

– Design optimization algorithms which can be 
deterministic or stochastic in nature 

– Solve with either global or local optimality
• Why optimization?

– Real-world data do not always follow assumptions
– Solutions need to observe some optimal properties
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Example 1: Engineering Design Problem

• Consider lighting a large area with a number 
of lamps:

• Each lamp has a total power limit
• Several points in the room have a ‘desired 

illumination level’
• How much power should be applied to each 

lamp to get the room as close as possible to 
desired level?
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Example 2: Inventory Levels
• A wholesale Bicycle Distributor:

– Purchases bikes from manufacturer and supplies 
to many shops

– Demand to each shop is uncertain
– How many bikes should the distributor order from 

the manufacturer?
• Costs:

– Ordering cost to manufacturer
– Holding cost in factory
– Shortage cost due to lack of sales
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Example 3: Network Flow
• A telecom service provider:

– Routing calls through existing networks
– Demanding on call distribution is uncertain
– Desiring good overall network performance
– How many calls should be distributes to which part 

of the network?
• Costs:

– Minimum time for each call or groups of calls
– Maximal flow for each call or groups of calls
– Overall capacity and QoS are two major constraints
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Optimization Topics
• Root finding
• Curve Fitting and Regression
• Linear Programming
• Nonlinear programming
• Heuristic Methods
• Integer programming
• Dynamic programming
• Inventory Theory
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Types of Optimization Problems
• Linear: Linear functions for objective and 

constraints
• Nonlinear: Nonlinear functions…
• Convex
• Integer
• Mixed-Integer
• Combinatorial
• Unconstrained: No constraints
• Dynamic: Solved in stages
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Modeling and Optimization Stages
• Define problem and gather data

— Feasibility check
• Formulate mathematical model
• Develop computer-based method for finding 

optimal solution
— Design and Software implementation

• Test and refine model
— Validation

• Prepare for ongoing model utilization
— Training, installation

• Implement
— Maintenance, updates, reviews, documentation, 

dissemination
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Root Solving: Nonlinear Equations
Given g(V)=I
It can be expressed as: f(V)=g(V)-I

⇒ Solve g(V)=I equivalent to solve f(V)=0

Hard to find analytical solution for f(x)=0

Solve iteratively
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Root Solving: Iterative Method
• Start from an initial value x0

• Generate a sequence of iterate xn-1, xn, xn+1

which hopefully converges to the solution x*
• Iterates are generated according to an 

iteration function F: xn+1=F(xn)

Ask
• When does it converge to correct solution ?
• What is the convergence rate ?
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Newton-Raphson (NR) Method
• Consisting of linearizing the system

– Want to solve f(x)=0 → Replace f(x) with its 
linearized version and solve

• Note: at each step need to evaluate f and f’
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Newton-Raphson Method - Graphics
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Curve Fitting
• Fit y=r(x) to a set of pairs of random samples:

– We will have curve fitting errors: di
– r(.) is a regression function
– Goodness of fit: minimizing least squared errors

• Polynomial fitting (MATLAB example):
• Linear fitting: y=r(x)=a+bx
• Spline (cubic) fitting

– Local and global optimization
– Various optimization criteria
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Linear Regression
• Least Squares: Minimizing Sum of Squared Error

• We obtain the following matrix normal equation

• Solving for intercept a and slope b : y=polyfit(y,x,n)

• Extend to more than one regressor (econometrics)
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Optimization Overview
• Variables:

• Objective:

• Subject to Constraints:

• Sometimes additional 
constraints:

– Binary
– Integer

• Sometimes uncertainty in 
parameters (stochastic 
optimization)
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Transforming the Objective Function
• In many instances it is easier to work with 

transformations of a function – i.e., logarithmic 
transformation of Cobb-Douglas

• Under what conditions do solutions to original and 
transformed optimization problems correspond?

Theorem: Let φ: R → R be a strictly increasing function, that is, a 
function such that 

x > y implies that φ(x) > φ(y)

Then x is a maximum of f on S if and only if x is also a maximum of 
the composition φ ° f on S.
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Existence of an Optimum
• Under what conditions on the objective function and the 

constraint set are we guaranteed that solutions will always 
exist ?

• Trivial conditions can always be introduced that guarantee 
existence – i.e., a finite constraint set – but we want general 
conditions

• Weierstrass Theorem describes such a set of conditions 
– Constraint set is compact
– Objective function is continuous on the constraint set

• Conditions of Weierstrass Theorem are sufficient so there are 
situations where conditions are violated but optima exist
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Unconstrained Optima: First-Order Conditions

• Intuition – Single Variable Case
Unable to increase the value of the objective function 
by moving a small amount from x* in either direction

Note: Optima correspond to stationary points of the 
objective function.  However not all stationary points 
are in fact optima.

Theorem: Suppose nSx ℜ⊂∈ int*  is a local 
 maximum of a differentiable function f on S.  
 Then Df(x*) = 0.   
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Unconstrained Optima: Second-Order Conditions

Proposition (Second-order conditions for optimum of a function)  
Let  f  be a function of n variables with continuous partial derivatives 
of first and second order, defined on the set S. Suppose that x* is a 
stationary point of  f  in the interior of S (so that  f i'(x*) = 0 for all i).  

• If H(x*) is negative definite then x* is a local maximizer.  
• If x* is a local maximizer then H(x*) is negative semidefinite.  
• If H(x*) is positive definite then x* is a local minimizer.  
• If x* is a local minimizer then H(x*) is positive semidefinite.  
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Second Order Conditions – Curvature of the 
Objective Function

• Strict concavity of the objective function is sufficient 
to ensure that any x* yielding maximum value

• Conversely, strict convexity of the objective function 
is sufficient to ensure that any x* yielding minimum 
value

• How do we test the curvature properties of a 
function?
– Second-derivatives and second order conditions
– Hessian matrix vs. gradient vector
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Local versus Global Optima
• Important distinction in the second-order conditions for global 
and local optima

– Definiteness of Hessian is evaluated at a given point for local optima
– Definiteness of Hessian must hold for all values of x for a global optima

To state briefly the results for maximizers together:  

Sufficient conditions for local maximizer: if x* is a stationary point of  f  and the 
Hessian of  f  is negative definite at x* then x* is a local maximizer of  f   
 
Sufficient conditions for global maximizer: if x* is a stationary point of  f  and the 
Hessian of  f  is negative semidefinite for all values of x then x* is a global 
maximizer of  f .  
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Constrained Optimization
• So far we have examined case where set of feasible 

choices is unlimited
– Agents have unlimited income
– No scarcity of resources
– No regulatory constraints on actions

• In many real world applications, the set of feasible 
choices is constrained
– Agents have a finite budget set to spend on purchases
– Factors of production are finite and scarce
– Regulatory agencies limit the use of certain inputs
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Intuition: The Theorem of Lagrange
• Consider the following maximization problem

• Intuitively we want to find a stationary point of this objective 
function

– Unable to increase the value of the objective function by changing 
any x by a small amount without violating one of the constraints

• However, stationarity at a point is only a necessary 
condition for a local optima
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Optimization – Functions of Multiple Variables

• Consider a function g(x1, x2) that depends upon two 
variables – x1 and x2

• How do we solve for a vector (x1*, x2*) that 
maximizes this objective function?

• Tools of optimization
– Extend analysis to consider system of first-order conditions
– System of equations obtained by taking partial derivatives of 

g(·) with respect to its arguments – x1 and x2

– Simultaneously solve this system of equations to derive 
optimal choice 
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Optimization – Functions of Multiple Variables
• Consider the following optimization problem:

• To solve such a problem, take the partial derivative of g(x1, x2)
with respect to both x1 and x2 and set these partials equal to zero

• Want to find a point where ceteris paribus an incremental change 
in x1 does not alter the value of the objective function

• Generates a system of two equations in two unknowns – x1 and x2
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Linear Programming: Problem Definition
Maximize: c1x1 + c2x2 + ... + cdxd

Subject to the conditions: 
a1,1x1 + ... a1,dxd ≤ b1
a2,1x1 + ... a2,dxd ≤ b2

: : :
an,1x1 + ... an,dxd ≤ bn

Linear program of dimension d:
c = (c1,c2,...,cd)
hi = {(x1,...,xd) ; ai,1x1 + ... + ai,dxd ≤ bi}

li = hyperplane that bounds hi ( straight lines, if d=2 )
H = {h1, ... , hn}
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Max  f(x1,…,xn)

s.t. gi(x1,…,xn) ≤ bi
i = 1,…,m

x1 ≥ 0,…,xn ≥ 0

is a convex program if 
f is concave and each 
gi is convex

Min  f(x1,…,xn)

s.t. gi(x1,…,xn) ≤ bi
i = 1,…,m

x1 ≥ 0,…,xn ≥ 0

is a convex program if 
f is convex and each gi
is convex

Convex Programming
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Dynamic Programming
• Break the main problem in sub-problems
• Express the optimum solution of the main 

problem in terms of those of the sub-
problems

• Solve the sub-problems recursively
• Combine the solutions of the subproblems to 

solve the main problem
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Bellman’s Principle of Optimality
• The global problem is solved optimally only if 

all sub-problems are solved optimally
• Holds for shortest path problem

– Any segment of a shortest path is a shortest path 
between the corresponding source and destination

• May not always hold
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Multi-layer Feed-forward Neural Networks
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Maximum Likelihood Estimation for Gaussians
• Given iid samples from a normal distribution, what’s their 

joint density (likelihood)?

• It can been shown that the sample mean has also a 
normal distribution, can you derive the density?

• Suppose the mean needs to be estimated form the iid
samples, show the sample mean is the maximum 
likelihood (“best”) estimate of     ? 

• ML is the most frequently used estimation method
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Maximum Likelihood Estimation of N-grams

• Properties of n-grams

• MLE of Multinomial Distribution Parameters
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Summary
• Today’s Class

– Optimization basics
– Web: http://www.ece.gatech.edu/~chl/ECE8813.sp09

• Next Classes
– Discussion of class projects
– Overview of linguistics essentials

• Exercises: make sure you know the topics discussed and 
how to do all the exercises suggested in Lectures 3 and 4

• Lab1: Assigned on 1/13, due on 1/27
• Reading Assignments

– Manning and Schutze, Chapters 1 & 2
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