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Course Information
• Subject: Statistical Language Processing
• Prerequisite: ECE3075, ECE4270
• Background Expected

– Basic Mathematics and Physics
– Digital Signal Processing
– Basic Discrete Math, Probability Theory and Linear Algebra

• Tools Expected:
– MATLAB and other Programming Tools
– Language-specific tools will be discussed in Class

• Teaching Philosophy
– Textbooks and reading assignments: your main source of learning
– Class Lectures: exploring beyond the textbooks  
– Homework: hand-on and get-your-hands-dirty exercises
– Class Project: a good way to go deeper into a particular topic

• Website: http://users.ece.gatech.edu/~chl/ECE8813.sp09
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Information Theoretic Perspective
• Communication theory deals with systems for 
transmitting information from one point to another

• Information theory was born with the discovery of 
the fundamental laws of data compression and 
transmission, including channel modeling
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Data Compression

Lot’s O’ Redundant Bits

Encoder

Decoder

Fewer Redundant Bits

Lot’s O’ Redundant Bits

• An interesting consequence:
A Data Stream containing the most 
possible information possible (i.e. the 
least redundancy) has the statistics 
of random noise
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Huffman Coding

• Suppose we have an alphabet with four letters A, 
B, C, D with frequencies:

• Represent this with A=00, B=01, C=10, D=11. This 
would mean we use an average of 2 bits per letter

• On the other hand, we could use the following 
representation: A=1, B=01, C=001, D=000. Then 
the average number of bits per letter becomes

(0.5)*1+(0.3)*2+(0.1)*3+(0.1)*3 = 1.7
• The representation, on average, is more efficient. 

A B C D
0.5 0.3 0.1 0.1
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Information Theory & C. E. Shannon
• Claude E. Shannon (1916-2001, from BL to MIT): 

Information Theory, Modern Communication Theory
• Entropy (Self-Information) – bit, amount of info in r.v.
• Study of English – Cryptography Theory, Twenty 

Questions game, Binary Tree and Entropy, etc.
• Concept of Code – Digital Communication, Switching 

and Digital Computation (optimal Boolean function 
realization with digital relays and switches)

• Channel Capacity – Source and Channel Encoding, 
Error-Free Transmission over Noisy Channel, etc.

• “A Mathematical Theory of Communication”, Parts 1 & 2, 
Bell System Technical Journal, 1948.



7 Center of Signal and Image Processing
Georgia Institute of Technology

Information vs. Physical Entropy
• Physicist Edwin T. Jaynes identified a direct 

connection between Shannon entropy and physical 
entropy in 1957

• Ludwig Boltzmann’s grave is embossed with his 
equation: S = k log W
Entropy = Boltzmann’s-constant
* log( function of # of possible micro-states )

• Shannon’s measure of information (or uncertainty or 
entropy) can be written: I = K log Ω
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Uncertainty
• Suppose we have a set of possible events whose 

probabilities of occurrence are p1, p2, …, pn
• Say these probabilities are known, but that is all we 

know concerning which event will occur next
• What properties would a measure of our uncertainty, 

H(p1, p2, …, pn), about the next symbol require:
― H should be continuous in the pi
― If all the pi are equal (pi = 1/n), then H should be a 

monotonic increasing function of n
• With equally likely events, there is more choice, or 

uncertainty, when there are more possible events
― If a choice is broken down into two successive choices, the 

original H should be the weighted sum of the individual 
values of H
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Illustration on Uncertainty

• On the left, we have three possibilities:
p1 = 1/2, p2 = 1/3, p3 = 1/6

• On the right, we first choose between two possibilities:
p1 = 1/2, p2 = 1/2

and then on one path choose between two more:
p3 = 2/3, p4 = 1/3

• Since the final probabilities are the same, we require:
H(1/2, 1/3, 1/6)  =  H(1/2, 1/2)  +  1/2 H(2/3, 1/3)
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Entropy
• In a proof that explicitly depends on this decomposibility

and on monotonicity, Shannon establishes
Theorem 2:  The only H satisfying the three above 

assumptions is of the form:

where K is a positive constant
• Observing the similarity in form to entropy as defined in 

statistical mechanics, Shannon dubbed H the entropy of 
the set of probabilities p1, p2, …, pn

• Generally, the constant K is dropped; Shannon explains 
it merely amounts to a choice of unit of measure

H  =  - K ∑ pi log pi
n

i=1
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Behavior of the Entropy Function
• In the simple case of two possibilities with probability 

p and q = 1 - p, entropy takes the form
H  =  - (p log p  +  q log q)

and is plotted here as a function of p:
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More on the Entropy Function
• In general, H = 0 if and only if all the pi are 

zero, except one which has a value of one
• For a given n, H is a maximum (and equal to 

log n) when all pi are equal (1/n)
– Intuitively, this is the most uncertain situation

• Any change toward equalization of the 
probabilities p1, p2, …, pn increases H
– If pi ≠ pj, adjusting pi and pj so they are more nearly 

equal increases H
– Any “averaging” operation on the pi increases H
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Joint Entropy
• For two events, x and y, with m possible states for x and n

possible states for y, the entropy of the joint event may be 
written in terms of the joint probabilities

while

• It is “easily” shown that H(X,Y)  ≤ H(X)  +  H(Y)
– Uncertainty of a joint event is less than or equal to the sum of the 

individual uncertainties 
– Only equal if the events are independent: p(x,y) = p(x) p(y)

H(X,Y)  =  - ∑ p(xi,yj) log p(xi,yj)
i,j

H(X)  =  - ∑ p(xi,yj) log ∑ p(xi,yj)
i,j j

H(Y)  =  - ∑ p(xi,yj) log ∑ p(xi,yj)
i,j i
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Conditional Entropy
• Suppose there are two chance events, x and y, not 

necessarily independent.  For any particular value xi that x
may take, there is a conditional probability that y will have 
the value yj, which may be written

• Define the conditional entropy of y, H(y|x) as the average 
of the entropy of y for each value of x, weighted according 
to the probability of getting that particular x

– This quantity measures, on the average, how uncertain we are 
about y when we know x

j
p(yj|xi)  =  p(xi,yj) / ∑ p(xi,yj)

H(Y|X) = - ∑ p(xi,yj) log p(yj|xi)
i,j

H(Y|X) = - ∑ p(xi) p(yj|xi) log p(yj|xi)
i,j

=  p(xi,yj) / p(xi)
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Joint, Conditional, & Marginal Entropy

• Substituting for p(yj|xi), simplifying, and 
rearranging yields: H(X,Y)  =  H(X)  +  H(Y|X)
– The uncertainty, or entropy, of the joint event x, y is 

the sum of the uncertainty of x plus the uncertainty of 
y when x is known

• Since H(X,Y)  ≤ H(X) + H(Y), and given the 
above, then H(Y)  ≥ H(Y|X)
– The uncertainty of y is never increased by 

knowledge of x
• It will be increased unless x and y are independent, in which 

case it will remain unchanged
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Interpretation: on the average, knowing about Y can only 
reduce the uncertainty about X

The uncertainty of X is decreased if Y=1 is observed, it is 
increased if Y=2 is observed, and is decreased on the 
average
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7( 2) (2, )
8
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8 8
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Maximum and Normalized Entropy
• Maximum entropy, when all probabilities are equal is

Hmax =  log n
• Normalized entropy is the ratio of entropy to 

maximum entropy
Ho(X)  =  H(X)  /  Hmax

• Since entropy varies with the number of states, n, 
normalized entropy is a better way of comparing 
across systems
– Shannon called this relative entropy
– Some cardiologists and physiologists call entropy divided by 

total signal power normalized entropy
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Mutual Information (MI)
• Define Mutual Information (aka Shannon Information Rate) as

• When x and y are independent p(xi,yj) = p(xi)p(yj), so I(x,y)=0
• When x and y are the same, the MI of x, y is the same as the 

information conveyed by x (or y) alone, which is just H(x)
• Mutual information can also be expressed as

I(X,Y)  =  H(X)  - H(X|Y)  =  H(Y)  - H(Y|X)
• Mutual information is nonnegative
• Mutual information is symmetric; i.e., I(X,Y) = I(Y,X)

I(X,Y) = ∑ p(xi,yj) log [ p(xi,yj) / p(xi)p(yj) ]
i,j
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Mutual Information

Definition :

Show:
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Point-wise Mutual Information
• Point-wise MI: the amount of information provided by 

the occurrence of the event represented by “y” about 
the occurrence of the event represented by “x”

• Event-specific not ensemble average
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Entropy Definition Recap
• Entropy and information: given a discrete information 

source x with a pmf p(x), the number of bits required 
to describe the “information content” of the source

• Classical statistical thermodynamics

• Cross entropy and divergence

000log]
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Entropy for Binomial Distributions
• Binomial distribution: Compute H(R|n,p), n=1,2,…

• Show n=1, H(R|n,p)=1 peaks at p=1/2 (worst case!)

nrpp
rnr

npnrB rnr ≤≤−
−

= − 0where)1(
)!(!

!),;(

H(R|n,p)

p

How about for n=2 or more? 
– can you show max H(R|n,p)=n and peaks at p=1/2 for all n?

10

1



23 Center of Signal and Image Processing
Georgia Institute of Technology

Entropy Chain Rule
• Chain Rule for Entropy - Show the followings:

• Independence:
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Conditional Mutual Information
• Conditional Mutual Information

• Chain Rule for Mutual Information
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Bayes’ Theorem
• Swapping dependency between events

– calculate P(B|A) in terms of P(A|B) that is available and more 
relevant in some cases

• In many cases, it is not important to compute P(A)

• Another Form of Bayes’ Theorem (try n=2)
– If a set B partitions A, i.e.
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Kullback-Leibler (KL) Divergence
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• Distance measure between pmf’s (relative entropy)
– D(p||q)=0 if and only if q=p
– Relative (cross) entropy between true p(x) and assumed q(x)

• KL Divergence is a measure of the average number of bits 
that are wasted by encoding source p(x) with an estimated 
but not correct distribution q(x)

• Divergence can be a measure of independence, show that:
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Relative Entropy & Mutual Information

∑ ∑
∈ ∈
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• Chain Rule for Mutual Information
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• Conditional Relative Entropy
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Shannon’s Channel Modeling Paradigm

Channel
P(O|I)

Channel
Decoder

I O I

• Channel input is hidden (unobserved) while output is 
observed and used to infer the input (which is often 
approximated by a structural Markov model)

• Channel modeling with (I, O) pairs in large training sets

( | ) ( )ˆ arg max ( | ) arg max
( )I I

P O I P II P I O
P O∈Ω ∈Ω= =
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Modeling Input-Output Associations

• Hidden Markov Model (HMM)
• Artificial Neural Network (ANN)
• Classification and Regression Tree (CART)
• Support Vector Machine (SVM)
• Mixture of experts, Bayesian network 
• Many New Applications

– Rule induction, statistical parsing, machine translation
– Information retrieval,  text categorization, call routing, 

transliteration, pronunciation, machine translation, etc.
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Noisy 
Channel

Words W Speech S

Channel Modeling and Decoding

Channel 
Decoding

Speech S Words W

Speech Recognition

Noisy 
Channel

Message (M,W) Speech S

Channel 
Decoding

Speech S Message (M, W)

Speech Understanding

Noisy 
Channel

Document I Key Terms J

Channel 
Decoding

Key Terms J Document I

Information Retrieval

Noisy 
Channel

Speaker K Speech S

Channel 
Decoding

Speech S Speaker K

Speaker Identification
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Study on Entropy of English Letters

human 
prediction

1.34Shannon’s 2nd

Experiment

bigram2.8Second order

unigram4.03First order

uniform letter 
log(27)

4.76Zeroth order

CommentsCross Entropy (bits)Model

C. E. Shannon, “Prediction and Entropy of Printed English”, 
Bell System Technical Journal, Vol. 30, pp. 50-64, 1951.

Students’ in-class computations verify results, and trigram ~ 2 bits
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Probabilities of Letter Sequences
Markov Approximation to Probability of Letters
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• Cross entropy between true p(x) and model q(x)

• Perplexity: branching factor
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Entropy and Language Modeling
• Cryptography: the Enigma machine

– Units and their co-occurrence statistics
– Encryption and decryption of “fixed” units
– Language ID of encrypted sources

• Information retrieval & text classification
– Words as units and document modeling

• Multimedia pattern recognition
– Definition and modeling of audiovisual alphabets
– Tokenization: converting media to unit sequences
– Representation of audiovisual patterns
– Language modeling of units and co-occurrences
– Discriminative classifier learning
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Summary
• Today’s Class

– Information Theory Foundations
– Web: http://www.ece.gatech.edu/~chl/ECE8813.sp09

• Next Class
– Optimization essentials on Jan. 15

• Reading Assignments
– Manning and Schutze, Chapters 1 & 2
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