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Chunking and Grammar Induction
• Remember the IBM Story in mid-90’s
• Chunking: recognizing higher level units of 

structure that allow us to compress our 
description of a sentence

• Grammar Induction: Explain the structure of 
chunks found over different sentences

• Parsing: can be considered as implementing 
chunking
- http://en.wikipedia.org/wiki/Parsing
- http://nlp.standford.edu/downloards/lex-parser.shtml
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Syntax and Parsing
• Why should we care?

– Grammar checkers
– Question answering 
– Information extraction
– Machine translation

• Role of parsing in language analysis
– For programming languages, everything is driven by 

parsing
– For natural languages, many systems do things without 

parsing
• Due to the lack of good parser.
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Parsing Goals
• The goal: develop grammars and parsers that are:

– Accurate – produce good parses
– Model optimal – find their models’ actual best parses
– Fast – seconds to parse long sentences

• Technology exists to get any two, but not all three
– Exhaustive parsing – not fast

• Chart Parsing [Earley 70]
– Approximate parsing – not optimal

• Beam parsing, [Collins 97, Charniak 01]
• Best-First Parsing [Charniak et al. 98]

– Always build right-branching structure – not accurate
• The problem involves both: learning and inference
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Context-Free Grammars
• A context free grammar consists of a set of 

phrase structure rules:
– Examples

• S → NP VP
• N → dog

– One left hand side symbol (non-terminal)
– A sequence of right hand side symbols (terminals 

or non-terminals)
– “Context-Free” means that the LHS symbol of a 

rule can be rewritten as the sequence of RHS 
symbols in any context
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Context Free Grammars and NLP

• Definitely not a good match!
– Agreements

• Fifi is/*are sleeping

– Movements/empty categories
• Who do you think Gary voted for?

– Conjunctions
• Kim and Dale/*yesterday

• However, almost all NL parsers has a CFG 
parser as the core
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Parsing
• Parsing is the process of taking a string and a 

grammar and returning parse tree(s) for that string

Teacher strikes idle kids
N N V N

NP

VP

NP

S

Teacher strikes idle kids
N V A N

NP

VP
NP

S
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Sentence-Types
• Declaratives:  A plane left

– S → NP VP
• Imperatives:   Leave!

– S → VP
• Yes-No Questions: Did the plane leave?

– S → Aux NP VP
• WH Questions: When did the plane leave?

– S → WH Aux NP VP
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Recursion
• We’ll have to deal with rules such as the following 

where the non-terminal on the left also appears 
somewhere on the right (directly)
– NP → NP PP [[The flight] [to Boston]]
– VP → VP PP [[departed Miami] [at noon]]

• An example from ATIS
– Flights from Denver
– Flights from Denver to Miami
– Flights from Denver to Miami in February
– Flights from Denver to Miami in February on a Friday
– Flights from Denver to Miami in February on a Friday 

under $300
– Flights from Denver to Miami in February on a Friday 

under $300 with lunch



10 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Recursion

• Of course, this is what makes syntax interesting
– [[Flights] [from Denver]]
– [[[Flights] [from Denver]] [to Miami]]
– [[[[Flights] [from Denver]] [to Miami]] [in February]]
– [[[[[Flights] [from Denver]] [to Miami]] [in 

February]] [on a Friday]]
– Etc.
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The Key Point 
• VP → V NP

– Only care that the thing after the verb is an NP 
– Doesn’t have to know about the internal affairs of 

the NP
• Flights from Denver
• Flights from Denver to Miami
• Flights from Denver to Miami in February
• Flights from Denver to Miami in February on a Friday
• Flights from Denver to Miami in February on a Friday 

under $300
• Flights from Denver to Miami in February on a Friday 

under $300 with lunch
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CFG Parsing
• Top down

– Start from S, gradually expand rules to cover all the 
words

– Usually involve search
• Bottom up

– Start from words, gradually build up larger structures 
up to S

– Usually involve dynamic programming
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Chart Parsing: Key Ideas
• Dynamic programming

– Try everything, but never try the same thing more 
than once

• Ambiguity packing
– Example: the NP “the book on the table by 

Chomsky”, has two possible structures. However, 
if one of them can appear in a context, the other 
one can too

– Stops the unnecessary propagation of ambiguities
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What is a Chart?
• A chart is a graph

– Nodes represent word boundaries
– There are two kinds of arcs

• Active arcs: partially built phrases 
• Complete arcs: fully built phrases

– Arcs are labeled with dot rules

0    teacher    1    strikes    2    idle    3    kids    4

S=>NP o VP

S=>NP VP o
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Example Arcs
• Arc: [0, 1] N => teacher

– [0, 1] is a noun
• Arc: [0, 1] S => NP VP

– We are trying to find a S, we’ve found the NP at [0,1]. We’ll 
be looking for a VP from position 1

• Arc: [2, 4] S => NP VP
– We are trying to find a S, we’ve found the NP at [2,4]. We’ll 

be looking for a VP from position 4
• Arc: [1, 4] VP => V NP 

– We’ve found a VP at [1,4] that consists of a V and a NP
• Arc: [1, 4] VP => VP PP

– We are trying to find a VP, we’ve found the component VP at 
[1,4]. We’ll be looking for a PP from position 4

• Arc: [0, 4] S => NP VP 
– We’ve found a S at [0,4] that consists of a NP and a VP
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Chart Parsing: Initialization
• A chart has an agenda which keeps the 

complete arcs to be added to the chart
• The agenda is initialized with results of 

lexical look up
– 0 teacher 1 strikes 2 idle 3 kids 4

• [0, 1] N => teacher 
• [1, 2] N => strikes 
• [1, 2] V => strikes 
• [2, 3] V => idle 
• [2, 3] Adj => idle 
• [3, 4] N => kids 
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Chart Parsing: Algorithm
while (!agenda.empty()) {
arc = agenda.getFront();
creatArcs(arc->lhs(), rules);
foreach activeArc before arc {  
applyFundamentalRule(activeArc, arc);

}
}
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Chart Parsing: Fundamental Rule

• Given
– an active arc: [a, b] X → … Y …; and 
– a complete arc: [b, c] Y → ……

create a new arc:
– [a, c] X → … Y …

• The new arc can be
– complete (if nothing follows Y in X → … Y …), or
– active      (otherwise)
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Chart Parsing Example
(def-cfg S
(S  => NP VP)
(N1 => Adj N1)
(N1 => N)
(N1 => N N)
(NP => N1)
(NP => Det N1)
(N1 => N1 PP)
(NP => Pron)
(NP => Name)
(VP => V)
(VP => V NP)
(VP => VP PP)
(PP => P NP)
)

(def-lexicon
(teacher N)
(strikes N V)
(idle V Adj)
(kids N)
(she Pron)
(him Pron)
(in P)
(the Det)
(boy N)
(park V N)
(found V)

)
Input: teacher strikes idle kids
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Application of Derivation Rules
Arc: [0, 1] N => teacher 
Arc: [0, 1] N1 => N 
Arc: [0, 1] N1 => N N
Arc: [0, 1] NP => N1 
Arc: [0, 1] N1 => N1 PP
Arc: [0, 1] S => NP VP
Arc: [1, 2] N => strikes 
Arc: [1, 2] V => strikes 
Arc: [1, 2] N1 => N 
Arc: [1, 2] N1 => N N
Arc: [0, 2] N1 => N N o
Arc: [1, 2] VP => V 
Arc: [1, 2] VP => V NP
Arc: [1, 2] NP => N1 
Arc: [1, 2] N1 => N1 PP
Arc: [0, 2] NP => N1 

Arc: [3, 4] N => kids 
Arc: [3, 4] N1 => N 
Arc: [3, 4] N1 => N N
Arc: [3, 4] NP => N1 
Arc: [3, 4] N1 => N1 PP
Arc: [2, 4] N1 => Adj N1 
Arc: [3, 4] S => NP VP
Arc: [2, 4] VP => V NP 
Arc: [2, 4] NP => N1 
Arc: [2, 4] N1 => N1 PP
Arc: [2, 4] VP => VP PP
Arc: [1, 4] S => NP VP 
Arc: [0, 4] S => NP VP 
Arc: [2, 4] S => NP VP
Arc: [1, 4] VP => V NP 
Arc: [1, 4] VP => VP PP
Arc: [0, 4] S => NP VP 

Arc: [0, 2] N1 => N1 PP 
Arc: [1, 2] VP => VP PP 
Arc: [1, 2] S => NP VP 
Arc: [0, 2] S => NP VP 
Arc: [2, 3] V => idle 
Arc: [2, 3] Adj => idle 
Arc: [2, 3] VP => V 
Arc: [2, 3] VP => V NP
Arc: [2, 3] N1 => Adj N1
Arc: [2, 3] VP => VP PP
Arc: [1, 3] S => NP VP 
Arc: [0, 3] S => NP VP 
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Computational Complexity
O(N3G)

– N is the number of words in the input sentence
– G is the total length of rules (measured by the 

number of symbols)
– It could be O(N3G2) if grammar rules are not 

carefully organized (e.g., simply as a list)
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Top-Down vs. Bottom-Up
• Top-down

– Only searches for trees that can be answers
– But suggests trees that are not consistent with the 

words
• Bottom-up

– Only forms trees consistent with the words
– Suggest trees that make no sense globally
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Computing String Probability
• a_dog saw a_cat with a_telescope

1         2      3       4           5

• Create table N x N (N = length): cells might have more “lines”
• Initialize on diagonal, using S → a rules
• Recursively compute along diagonal towards upper right 

corner

from \to 1 2 3 4 5
1 N P .21

N  .3
S  .441 S  .00966

2 V  1 V P  .21 V P .046
3 N P .35

N  .5
N P  .03

4 PR E P 1 PP  .2
5 N  .2
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Language Model vs. Parsing Model
• Language model:

– interested in string probability:
P(W) = probability definition using a formula such as
= Πi=1..n p(wi|wi-2,wi-1)                trigram language model
= Σs∈S p(W,s) = Σs∈S Πr∈sr ; r ~ rule used in parse tree

• Parsing model
– conditional probability of tree given string:P(s|W) = 

P(W,s) / P(W) = P(s) / P(W)      !! P(W,s) = P(s) !!
– for argmax, just use P(s) (P(W) is constant)
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Parsing Complexity

• Time complexity of (general) CFG parsing is 
dominated by the number of traversals done

• Traversals represent the combination of two 
adjacent parse items into a larger one:

S:[0,3]

NP:[0,2] VP:[2,3]

= O(G2N3)
N ≈ 70
=343K

G ≈ 15,000
= 2 x 108



26 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Why is NL Understanding Difficult?
• Hidden structure of language is highly ambiguous
• Tree for: Fed raises interest rates 0.5% in effort to 

control inflation (NYT headline 5/17/00)
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Where Are the Ambiguities?
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The Bad Effects of V/N Ambiguities

0.4

x 0.5 

x 0.1 = 0.02
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Ambiguity of English: Newspaper Headlines

• Ban on Nude Dancing on Governor's Desk – from a 
Georgia newspaper discussing current legislation 

• Juvenile Court to Try Shooting Defendant
• Teacher Strikes Idle Kids
• Stolen Painting Found by Tree
• Local High School Dropouts Cut in Half
• Red Tape Holds Up New Bridges
• China to orbit human on Oct. 15
• Moon wants to go to space
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Parsing for Disambiguation
• Probabilities for determining the sentence: 

choose sequence of words from a word 
lattice with highest probability (language 
model)

• Probabilities for speedier parsing: prune the 
search space of a parser

• Probabilities for choosing between parses:
choose most likely among many parses of the 
input sentence
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Weakening the Independence Assumptions
• In PCFGs we make a number of 

independence assumptions
• Context: Humans make wide use of context

– Context of who we are talking to, where we are, prior context 
of the conversation

– Prior discourse context
– People find semantically intuitive readings for sentences

• We need to incorporate these sources of 
information to build better parsers than 
PCFGs
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• Lexicalization: The PCFG independence 
assumptions do not take into consideration 
the particular words in the sentence
– We need to include more information about the 

individual words when making decisions about the 
parse tree structure

• Structural Context: Certain types have 
location preferences in the parse tree

• In the PCFG case the way we derive (order of 
rewriting) the tree does not alter the tree 
probability

Weakening the Independence Assumptions
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Phrase Structure & Dependency Grammars

• In a dependency grammar, one word is the 
head of a sentence, and all other words are 
either a dependent of that word, or else 
dependent on some other word which 
connects to the head word through a series of 
dependencies
– Lexicalized: Dependencies between words are 

taken care of
– Gives a way of decomposing phrase structure 

rules
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Treebanks
• A collection of example parses by experts
• A commonly used treebank is the Penn Treebank 

http://www.cis.upenn.edu/~treebank/
• The induction problem is now that of extracting the 

grammatical knowledge that is implicit in the 
example parses

• Treebanks for other languages: Korean, Chinese
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PCFG Estimation (Charniak, 1996)
• Uses Penn Treebank POS and phrasal categories to 

induce a maximum likelihood based PCFG
– by using the relative frequency of local trees as 

the estimates for rules
– no attempt to do any smoothing or collapsing of 

rules
• Works surprisingly well: majority of parsing decisions 

are mundane and can be handled well by non-
lexicalized PCFG
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Partially Unsupervised Learning
(Pereira and Schabes, 1992)

• The parameter estimation space is too big for PCFGs
that are of realistic sizes

• Some good practices: 
– Begin with a Chomsky normal form grammar with limited 

non-terminals and POS tags
– Train on Penn treebank sentences
– ignore the non-terminal labels, but use the treebank

bracketing
– Use a modified Inside-Outside algorithm constrained to 

consider parses that do not cross Penn-Treebank nodes 
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Data Oriented Parsing
• Use whichever fragments of trees appear to 

be useful, can be multiple yet distinct parses
• Parse using Monte Carlo simulation methods

– prob. is estimated by taking random samples of 
derivations
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History Based Grammars (HBG)
• All prior parse decisions could influence 

following parse decisions in the derivation
• (Black et al. 1993) 

– Use decision trees to decide which features in the 
derivational history were important in determining 
the expansion of the current node 

– Consider only nodes on a path to the root
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Once again, Lexicalization
• Lexicalized parse tree (~ dependency tree+phrase

labels)
• Ex. subtree:

• Pre-terminals (above leaves): assign the word 
below

• Recursive step (step up one level): (a) select 
node, (b) copy word up

PP(with)

PREP(with)     N(telescope) 
with                   a_telescope
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Lexicalized Tree Example
• #1 S → NP VP
• #2 VP → V NP PP 
• #3 VP → V NP
• #4 NP → N
• #5 NP → N PP
• #6 PP → PREP N
• #7 N → a_dog
• #8 N → a_cat
• #9 N → a_telescope
• #10 V → saw
• #11 PREP → with a_dog saw a_cat with a_telescope

N     V      N   PREP     N 

NP(a_dog)NP(a_cat)PP(with)

VP(saw)

S(saw)
VP(saw)

NP(a_cat)

PP(with)
V     N(a_cat)

PREP     N 
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Using PoS Tags

a_dog saw a_cat with a_telescope

N     V      N   PREP     N 

NP(a_dog,N) NP(a_cat,N)PP(with,PREP)

VP(saw,V)

S(saw,V)

• Head ~ word,tag
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Conditioning

• Original PCFG: P(αBγDε...|A)
– No “lexical” units (words)

• Introducing words:
P( α B(headB) γ D(headD) ε ... |A(headA))

where headA is one of the heads on the left

e.g.   rule VP(saw) → V(saw)  NP(a_cat):
P(V(saw)  NP(a_cat) | VP(saw))
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Independence Assumptions
• Too many rules
• Decompose:

P( α B(headB) γ D(headD) ε ... |A(headA)) =

• In general (total independence):
P(α|A(headA)) × P(B(headB)|A(headA)) × ... × P(ε|A(headA))

• Too much independent: need a compromise
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The Decomposition
• Order does not matter, use intuition (“linguistics”)
• Select the head daughter category:

PH(H(headA)|A(headA))

• Select everything to the right:
PR(Ri(ri) | A(headA),H)

• Also, choose when to finish: Rm+1(rm+1) = STOP
• Similarly, for the left direction: PL(Li(li) | A(headA),H)

H(head)

A(head)

H(head)

A(head)

R1(head1)R2(head2) STOP
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Example Decomposition
• Order:

• Example:

H(head)

A(head)

R1(head1)R2(head2) STOPL1(head1)STOP

1

23

V(saw)

VP(saw)

NP(a_cat) PP(with) STOPSTOP
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More Conditioning: Distance
• Motivation:

– close words tend to be dependents (or phrases) more likely
– “walking on a sidewalk on a sunny day without looking on..”

• Number of words too detailed, though:
– use more sophisticated (yet robust) distance measure dr/l:

• distinguish 0 and non-zero distance (2)
• distinguish if verb is in-between the head and the constituent in 

question (2)
• distinguish if there are commas in-between: 0, 1, 2, >2 commas (4)
• total: 16 possibilities added: PR(Ri(ri) | A(headA),H,dr)
• same to the left: PL(Li(li) | A(headA),H,dl)
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More Conditioning: Complement/Adjunct

• So far: no distinction

• ...but: time NP ¹ subject NP 
• also, Subject NP cannot repeat... useful during

parsing

[Must be added in training data]

VP(saw)

VP(saw)NP(a_dog)NP(yesterday)

VP(saw)

VP(saw)NP-C(a_dog)NP(yesterday)
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More Conditioning: Subcategorization

• The problem still not solved:
– two subjects:

wrong!
• Need: relation among complements

– [linguistic observation: adjuncts can repeat freely.]
• Introduce:

– Left & Right Subcategorization Frames (multisets) 

S(was)

VP(was)NP-C(the 7th-best)NP-C(Johns Hopkins)
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Inserting Subcategorization
• Use head probability as before:

PH(H(headA)|A(headA))

• Then, add left & right subcat frame:
Plc(LC| A(headA),H), Prc(RC| A(headA),H)

LC, RC: list (multiset) of phrase labels (not words)

• Add them to context condition:
(left) PL(Li(li) | A(headA),H,dl,LC)   [right: similar]

• LC/RC: “dynamic”: remove labels when generated
P(STOP|.....,LC) = 0   if LC non-empty



50 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Smoothing
• Adding conditions... ~ adding parameters
• Sparse data problem as usual (head ~ <word,tag>!)
• Smooth (step-wise):

Psmooth-H(H(headA)|A(headA)) =w1PH(H(headA)|A(headA)) + (1-
w1)Psmooth-H(H(headA)|A(tagA))

Psmooth-H(H(headA)|A(tagA)) =
w2PH(H(headA)|A(tagA)) + (1-w2)PH(H(headA)|A)

• Similarly, for PR and PL
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Parsing Algorithm for a Lexicalized PCFG
• Bottom-up Chart parsing

– Elements of a chart: a pair
• <(from-position,to-position,label,head,distance), probability>
• span - score -

– Total probability = multiplying elementary probabilities
→ enables dynamic programming: 

• discard chart element with the same span but lower score.

• “Score” computation:
– joining chart elements: [for 2]: <e1, p1>, <e2, p2>, <en,pn>:

• P(enew) = p1 ´ p2 ´ ... ´ pn ´ PH(...) ´ PPR(...) ´ PPL(...);
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Evaluation
• Exact Match Criterion: Compare parser 

performance with hand parses of sentences 
give 1 for exact match and 0 for any mistake

• Parseval Measures: Measure based on 
precision, recall and crossing brackets. Not 
very discriminating

• Partial Match Criterion
• Success in real tasks
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Equivalent Models
• Compare models in terms of what information is 

being used to condition the prediction of what 
Improving the Models by:
– Remembering more of derivational history
– Looking at bigger context in a phrase structure tree
– Enriching the vocabulary of the tree in deterministic 

ways
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Parsing as Search

X:h

i jh

X:h
[i,j]

NN:Factory
[0,1]

NP:payrolls
[0,2]

PP:in
[3,5]

VP:fell
[2,5]

S:fell
[0,5]

goal

NN:payrolls
[1,2]

VBD:fell
[2,3]

IN:in
[3,4]

NN:September
[4,5]

start

S:payrolls
[0,2]

VBP:payrolls
[1,2]

“Edge”
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CKY Parsing (Chart Parsing)
• In CKY parsing, we visit edges by span size:

Guarantees correctness by 
working inside-out.
Build all small bits before any 
larger bits that could possibly 
require them.
Exhaustive: the goal is among 
the nodes with largest span 
size!
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What Can Go Wrong?
• We can build too many edges

– Most edges that can be built, shouldn’t
– CKY builds them all!

• We can build in an bad order
– Might find bad parses before good parses
– Will trigger best-first propagation

Speed: build promising edges first

Correctness: keep edges on the agenda until 
you’re sure you’ve seen their best parse.
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• We want to work on good parses inside-out
– CKY does this synchronously, by span size
– Uniform-cost orders edges by their best known score

• Why it’s correct:

– Adding structure incurs probability cost.
– Trees have lower probability than their sub-parts.

• What makes things tricky:
– We don’t have a full graph to explore
– The graph is built dynamically; correctness depends on the right

bits of the graph being built before an edge is finished

Uniform-Cost Parsing

β ≥ β+ε

built before
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A* Search
• Problem with uniform-cost:

– Even unlikely small edges have high score
– We end up processing every small edge!

• Solution: A* Search
– Small edges have to fit into a full parse
– The smaller the edge, the more the full 

parse will cost
– Consider both the cost to build (β) and the 

cost to complete (α)
• We figure out β during parsing
• We GUESS at α in advance (pre-processing)

Score = β

Score = β + α

β

β
α
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Results
• English, WSJ, Penn Treebank, 40k sentences

< 40Words    < 100 Words
– Labeled Recall:                     88.1%             87.5%
– Labeled Precision:                88.6%             88.1%
– Crossing Brackets (avg):          0.91                1.07   
– Sentences With 0 CBs:           66.4%            63.9%

• Prague Dependency Treebank, 13k sentences:
– Dependency Accuracy overall:     80.0% 

(~ unlabelled precision/recall)
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Summary
• Today’s Class

– Statistical Parsing
• Next Classes

– Question Answering (last lecture)
– Lab 6 due on 4/14
– Final on 4/27 at 8:00-10:50
– Project monitoring

• Project Report due at midnight on 4/29 (or before 8am on 4/30)
– Project Presentation on 4/16

• In alphabetical order (15 minutes each)
• Reading Assignments

– Manning and Schutze, Chapters 11-12
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