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Phrase Structure
• Syntax and word order

– “I want to go to a movie tomorrow.” (English vs. Chinese)
• Constituents and phrases: equivalent classes

– Noun phrases
– Verb phrases
– Prepositional phrases
– Adjective phrases

• Phrase structure grammars
– Start symbols and derivation (rewrite) rules
– Terminal vs. non-terminal nodes
– Local vs. global parse trees
– Dependency: arguments and adjuncts

• Semantics (meaning) and pragmatics
• Language-specific properties: Multilingual issues
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Chunking and Grammar Induction
• Chunking: recognizing higher level units of 

structure that allow us to compress our 
description of a sentence

• Grammar Induction: Explain the structure of 
chunks found over different sentences

• Parsing: can be considered as implementing 
chunking and discovering sentence structures
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Formal Grammar Specification
• Grammar G={A, I, S, D} and Language L(G)

– G is defined by an alphabet set A, an intermediate set I, a root symbol 
S, and a set of derivation (production) rules D

– L(G) is the language of the set of sentences generated by G

– Type of String Grammars
– Type 0: free or unrestricted
– Type 1: context-sensitive

– Type 2: context-free 

– Type 3: finite state or regular

• Chomsky Normal Form (CNF)
– a context-free language can be replaced by another language in CNF

AzIzD ∈∈→→= γβααβγα ,,},{

string:,}{ βαψθαψβαθβ AIID ∪∈∈→=

AzIzzD ∈∈→→= βααβα ,},{
AIID ∪∈∈→= ψθψθ }{
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Context Normal Form (CNF)
• Chomsky hierarchy

– Type 0 Grammars/Languages
• rewrite rules α → β; α,β: any string of terminals and nonterminals

– Context-sensitive Grammars/Languages
• rewrite rules: αXβ → αγβ, where X is nonterminal, a,b,g any string 

of terminals and nonterminals (g must not be empty)

– Context-free Grammars/Languages
• rewrite rules: X → γ, where X is nonterminal, γ any string of 

terminals and nonterminals, G={A, I, S, D} and Language L(G)

– Regular Grammars/Languages
• rewrite rules: X → α Y X,Y: nonterminals, a: terminal string
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Context-Free Grammars
• A context free grammar consists of a set of 

phrase structure rules:
– Examples

• S → NP VP
• N → dog

– One left hand side symbol (non-terminal)
– A sequence of right hand side symbols (terminals 

or non-terminals)
– “Context-Free” means that the LHS symbol of a 

rule can be rewritten as the sequence of RHS 
symbols in any context
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Another NLP Example
#1 S → NP VP
#2 VP → V NP PP 
#3 VP → V NP
#4 NP → N
#5 NP → N PP
#6 PP → PREP N
#7 N → a_dog
#8 N → a_cat
#9 N → a_telescope
#10 V → saw
#11 PREP → with a_dog saw a_cat with a_telescope

N     V      N   PREP     N 

NP            NP PP

VP

S VP

NP

PP
V     N

PREP     N 
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Phrases & Dependency Grammars
• In a dependency grammar, one word is the 

head of a sentence, and all other words are 
either a dependent of that word, or else 
dependent on some other word which 
connects to the head word through a series of 
dependencies
– Lexicalized: Dependencies between words are 

taken care of to Include more information about 
the individual words when making decisions about 
the parse tree structure

– A way of decomposing phrase structure rules
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Dependency Style  Example
• Same example, dependency representation

saw

a_dog a_cat

with

a_telescope
Sb Obj Adv_Tool

saw

a_dog

a_cat

with

a_telescope
Sb Attr

Obj
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Assumptions
• Independence assumptions (very strong!)
• Independence of context (neighboring 

subtrees)
• Independence of ancestors (upper levels)
• Place-independence (regardless where in 

tree it appears) ~ time invariance in HMM
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Probability of a Derivation Tree
• Both phrase/parse/derivational “grammatical”
• Different meaning: which is better [in context]?
• “Internal context”: relations among phrases, words
• Probabilistic CFG:

relations among a mother node & daughter nodes
in terms of expansion [rewrite,derivation] probability
define probability of a derivation (i.e. parse) tree:

P(T) = Πi=1..n p(r(i))
r(i) are all rules of the CFG used to generate the sentence W of which T is a 

parse 
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Probabilistic Context Free Grammar

PCFG: G = {A, I, S, D, P(D)}

• Probability of a word sequence W according to G

• Probability of a parse tree (score and compare)
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Properties of PCFG
• Place Invariance

– Probability of a subtree does not depend on where in the 
sentence it dominates (spanning from p to q)

– Same as in HMM for time invariance

• Context-Free
– Probability of a subtree does not depend on words it does not 

dominates (spanning from p to q)

• Ancestor-Free
– Probability of a subtree does not depend on any derivation 

outside the subtree (spanning from p to q)

jikHckkIwwIP ijckkj ,,same)),(),,(( ∀→+=+K

)),(()wordsoutside|),(( ijij HlkIPHlkIP →=−→

)),(()subtreesoutside|),(( ijij HlkIPHlkIP →=−→



14 Center of Signal and Image Processing
Georgia Institute of Technology

EE8813 Spring 2009

PCFG Computation and Inference
• Problem 1: Evaluation

– How to compute P(W|G) efficiently?
– Computing inside and outside probabilities

• inside-outside algorithm for re-estimation

• Problem 2: Decoding
– Viterbi algorithm: finding the most likely parse tree which also 

implies the most likely derivation sequence
– Bayes Theorem:

• Problem 3: Parameter Estimation (Learning)
– Given a set of observations W, determine the unknown 

values of the set of parameters (much more involved)

• Countable State HMM (instead of finite state HMM)
}1,1:)({ QjJiHIPa iijji ≤≤≤≤→==θ

)()|(maxarg)|(maxargˆ tPtWPWtPt tt ==



15 Center of Signal and Image Processing
Georgia Institute of Technology

EE8813 Spring 2009

Probability of a Rule
• Rule r(i): A → a;
• Let RA be the set of all rules  r(j), which have 

nonterminal A at the left-hand side;
• Then define probability distribution on RA:

Σr∈RA
p(r) = 1, 0 ≤ p(r) ≤ 1

• Another point of view:
p(a|A) = p(r), where r = A → a, a ∈ (N∪T)+
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Estimating Probability of a Rule
• MLE from a treebank following a PCFG grammar
• Let r = A → a1 a2...ak :

– p(r) = c(r) / c(A)
– Counting rules c(r): how many instances appear in a 

treebank

– Counting nonterminals c(A):
just count them in the treebank

A

α1 α2 αk
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Treebanks
• A collection of example parses by experts
• A commonly used treebank is the Penn Treebank 

http://www.cis.upenn.edu/~treebank/
• The induction problem is now that of extracting the 

grammatical knowledge that is implicit in the 
example parses

• Treebanks for other languages
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Probability of a Derivation Tree
• Probabilistic CFG:

– relations among a mother node & daughter nodes
– in terms of expansion [rewrite,derivation] probability
– define probability of a derivation (i.e. parse) tree:

P(T) = Πi=1..n p(r(i))
• r(i) are all rules of the CFG used to generate the 

sentence W of which T is a parse
• Probability of a string W = (w1, w2, ..., wn) ?
• Non-trivial, because there may be many trees Tj as 

a result of a parsing W
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Probability of a String with a D-Tree

• Input string: W
• Parses: {dj}j=1..n = Parse(W)

P(D) = Σ j=1..n P(dj)

• Hard to use the naive method
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Example PCFG
• #1 S → NP VP 1.0
• #2 VP → V NP PP 0.4
• #3 VP → V NP 0.6
• #4 NP → N 0.7
• #5 NP → N PP 0.3
• #6 PP → PREP N 1.0
• #7 N → a_dog 0.3
• #8 N → a_cat 0.5
• #9 N → a_telescope 0.2
• #10 V → saw 1.0
• #11 PREP → with 1.0

P(a_dog saw a_cat with a_telescope) =

N     V      N   PREP     N 

NP            NP PP

VP

S VP

NP

PP
V     N

PREP     N 

1.0

0.4

0.7

0.3 1.0 0.5 1.0 0.2

0.7
1.0

0.6

0.3

1.0

1×.7×.4×.3×.7×1×.5×1×1×.2 + ... ×.6... ×.3... = .00588 + .00378 = .00966
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Computing String Probability
• a_dog saw a_cat with a_telescope

1         2      3       4           5

• Create table n x n (n = length): cells might have more 
“lines”

• Initialize on diagonal, using N → a rules
• Recursively compute along diagonal towards upper right 

corner

from \to 1 2 3 4 5
1 N P .21

N  .3
S  .441 S  .00966

2 V  1 V P  .21 V P .046
3 N P .35

N  .5
N P  .03

4 PR E P 1 PP  .2
5 N  .2
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Inside and Outside Probabilities
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Formula for Inside Probability

βN(p,q) = 

ΣA,B Σd=p..q-1 P(N→A,B)βA(p,d)βB(d+1,q)

• assuming the grammar G has rules of the form
N → w (terminal string only)
N → A B (two nonterminals)

• only (Chomsky Normal Form, or CRF)
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Computing Inside Probability
• Terminal-word derivation

• Root sentence derivation

• Inside Algorithm (Bottom-Up Induction)
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Computing Outside Probability
• Terminal derivation

• Root sentence derivation
• Outside Algorithm (Top-Down Induction)
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Computing Outside Prob. (Cont.)
• Outside Algorithm (Top-Down Induction)

• Inside-Outside Probability Product

• Is there a bracket from position p to q ?

• Pre-terminal (Non-terminal parent of a terminal)
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Decoding the Most Likely Parse
• Computing Optimal Partial Path Scores

– remember DP recursion (Principle of Optimality) !!
• Initialization
• DP-Recursion and Bookkeeping

• Termination (M-level Parse Tree)

• Traceback (left/right branches and break point)

• “Optimal” Derivation Sequence:
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PCFG Parameter Estimation
• Counting: for each training sentence W(i)

• ML Re-estimation of PCFG Parameters

• Solving the fixed point problem: EM algorithm
– E-step: compute new counts with old parameter estimates
– M-step: re-estimate parameters with new counts

),1(),()(),(),,,,( 1 qeepIIIPqpsrjqpf rsrj
q

pe ji +→= ∑ −

=
ββα

),()(),(),,( llwwPllkjlg jklji βα == ),(),(),,( qpqpjqph jji βα=

))]((),,([

))]((),,,,([
)(ˆ

11

)(

1

)(

11

1)(

1

)(

1

iWIPjqph

iWIPsrjqpf
IIIP Q

i

iM

p

iM

pq i

Q

i

iM

p

iM

pq i
srj

→

→
=→

∑ ∑ ∑
∑ ∑ ∑

= = =

=

−

= +=

))]((),,([

))]((),,([
)(ˆ

11

)(

1

)(
11

)(

1

iWIPjqph

iWIPkjlg
wIP Q

i

iM

p

iM

pq i

Q

i

iM

l i
kj

→

→
=→

∑ ∑ ∑
∑ ∑
= = =

= =



29 Center of Signal and Image Processing
Georgia Institute of Technology

EE8813 Spring 2009

Some Issues Before Moving On
• Problems with PCFG Estimation

– many unsolved research issues: less studied, more rewards
– sizes of A and I often unknown: O(M*M*M*Q*Q*Q)
– too little data to estimate too many parameters
– greater A and I imply more estimation & storage problem
– techniques in search, N-gram and HMM can be extended

• Parsing for Disambiguation and Understanding?
– probabilities for determining the sentence
– probabilities for speedier parsing (pruning efficiency)
– probabilities for choosing between parses (ranking/scoring)

• Labeled Corpus for Learning - Treebank
– chunking (bracketing): the first step to studying parsing
– Penn Treebank: widely used, large size; other languages?
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Summary
• Today’s Class

– Probabilistic Context Free Grammar
• Next Classes

– Statistical Parsing
– Lab 6 assigned
– Project monitoring

• Reading Assignments
– Manning and Schutze, Chapters 11-12
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