ECE8813 Statistical Natural Language Processing

Lecture 23: Probabilistic Context Free Grammar

Chin-Hui Lee

School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, GA 30332, USA chl@ece.gatech.edu

Phrase Structure

- Syntax and word order
 - "I want to go to a movie tomorrow." (English vs. Chinese)
- Constituents and phrases: equivalent classes
 - Noun phrases
 - Verb phrases
 - Prepositional phrases
 - Adjective phrases
- Phrase structure grammars
 - Start symbols and derivation (rewrite) rules
 - Terminal vs. non-terminal nodes
 - Local vs. global parse trees
 - Dependency: arguments and adjuncts
- Semantics (meaning) and pragmatics
- Language-specific properties: Multilingual issues

Chunking and Grammar Induction

- <u>Chunking</u>: recognizing higher level units of structure that allow us to compress our description of a sentence
- <u>Grammar Induction</u>: Explain the structure of chunks found over different sentences
- <u>**Parsing</u>**: can be considered as implementing chunking and discovering sentence structures</u>

Formal Grammar Specification

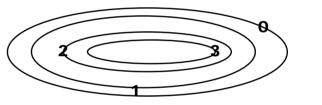
- Grammar G={A, I, S, D} and Language L(G)
 - G is defined by an alphabet set A, an intermediate set I, a root symbol S, and a set of derivation (production) rules D
 - -L(G) is the language of the set of sentences generated by G
- Type of String Grammars
 - Type 0: free or unrestricted
 - Type 1: context-sensitive

 $D = \{ \alpha \theta \beta \to \alpha \psi \beta \} \quad \theta \in I \quad \psi \in I \cup A \quad \alpha, \beta : \text{string}$

- Type 2: context-free

 $D = \{\theta \rightarrow \psi\} \quad \theta \in I \quad \psi \in I \cup A$

- Type 3: finite state or regular $D = \{\alpha \rightarrow z\beta, \alpha \rightarrow z\}$ $\alpha, \beta \in I$ $z \in A$
- Chomsky Normal Form (CNF)
 - a context-free language can be replaced by another language in CNF



Context Normal Form (CNF)

- Chomsky hierarchy
 - Type 0 Grammars/Languages
 - rewrite rules $\alpha \rightarrow \beta$; α,β : any string of terminals and nonterminals
 - Context-sensitive Grammars/Languages
 - rewrite rules: $\alpha X\beta \rightarrow \alpha \gamma \beta$, where X is nonterminal, a,b,g any string of terminals and nonterminals (g must not be empty)

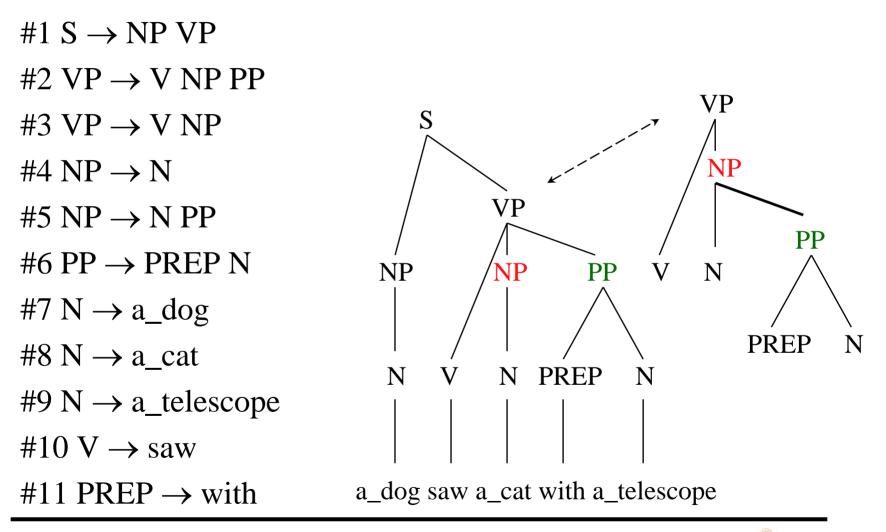
<u>Context-free Grammars/Languages</u>

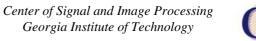
- rewrite rules: $X \rightarrow \gamma$, where X is nonterminal, γ any string of terminals and nonterminals, $G = \{A, I, S, D\}$ and Language L(G)
- Regular Grammars/Languages
 - rewrite rules: $X \rightarrow \alpha Y X, Y$: nonterminals, *a:* terminal string

Context-Free Grammars

- A context free grammar consists of a set of phrase structure rules:
 - Examples
 - $S \rightarrow NP VP$
 - $N \rightarrow dog$
 - One left hand side symbol (non-terminal)
 - A sequence of right hand side symbols (terminals or non-terminals)
 - "Context-Free" means that the LHS symbol of a rule can be rewritten as the sequence of RHS symbols in any context

Another NLP Example





Phrases & Dependency Grammars

- In a dependency grammar, one word is the head of a sentence, and all other words are either a dependent of that word, or else dependent on some other word which connects to the head word through a series of dependencies
 - Lexicalized: Dependencies between words are taken care of to Include more information about the individual words when making decisions about the parse tree structure
 - A way of decomposing phrase structure rules

Dependency Style Example

• Same example, dependency representation



Assumptions

- Independence assumptions (very strong!)
- Independence of context (neighboring subtrees)
- Independence of ancestors (upper levels)
- Place-independence (regardless where in tree it appears) ~ time invariance in HMM

Probability of a Derivation Tree

- Both phrase/parse/derivational "grammatical"
- Different meaning: which is better [in context]?
- "Internal context": relations among phrases, words
- Probabilistic CFG:

relations among a mother node & daughter nodes in terms of expansion [rewrite,derivation] probability define probability of a derivation (i.e. parse) tree:

$$P(T) = \prod_{i=1..n} p(r(i))$$

r(i) are all rules of the CFG used to generate the sentence W of which T is a parse

Probabilistic Context Free Grammar

PCFG:
$$G = \{A, I, S, D, P(D)\}$$

 $A = \{w_1, \dots, w_V\}$
 $I = \{I_1, \dots, I_Q\}$ with $S = I_1$
 $D = \{I_i \rightarrow H_j\}$ with $j = 1, \dots, J_i$
 $\forall i \quad \sum_{j=1}^{J_i} P(I_i \rightarrow H_j) = 1$ $H_j = \text{symbol-sequence}$

• Probability of a word sequence *W* according to *G*

$$P(W \mid G) = P(w_1^M \mid G) = \sum_t P(w_1^M \mid t) P(t) \quad t : \text{parse-tree}$$

• Probability of a parse tree (score and compare)

$$P(t) = P(d_1^L) = \prod_{j=1}^L P(d_j)$$
 d_j : parse-tree-rule

Properties of PCFG

- Place Invariance
 - Probability of a subtree does not depend on where in the sentence it dominates (spanning from *p* to *q*)

 $P(I_j(w_k,...,w_{k+c}) = I_j(k,k+c) \rightarrow H_i)$ same $\forall k,i,j$

- Same as in HMM for time invariance
- Context-Free
 - Probability of a subtree does not depend on words it does not dominates (spanning from *p* to *q*)

 $P(I_i(k,l) \rightarrow H_i | \text{outside} - \text{words}) = P(I_i(k,l) \rightarrow H_i)$

- Ancestor-Free
 - Probability of a subtree does not depend on any derivation outside the subtree (spanning from *p* to *q*)

 $P(I_j(k,l) \rightarrow H_i | \text{outside} - \text{subtrees}) = P(I_j(k,l) \rightarrow H_i)$

PCFG Computation and Inference

- Problem 1: Evaluation
 - How to compute P(W|G) efficiently?
 - Computing inside and outside probabilities
 - *inside-outside* algorithm for re-estimation
- Problem 2: Decoding
 - Viterbi algorithm: finding the most likely parse tree which also implies the most likely derivation sequence
 - Bayes Theorem: $\hat{t} = \operatorname{argmax}_{t} P(t | W) = \operatorname{argmax}_{t} P(W | t) P(t)$
- Problem 3: Parameter Estimation (Learning)
 - Given a set of observations *W*, determine the unknown values of the set of parameters (much more involved)

$$\theta = \{a_{ji} = P(I_j \rightarrow H_i): 1 \le i \le J_i, 1 \le j \le Q\}$$

Center of Signal and Image Processing Georgia Institute of Technology

• Countable State HMM (instead of finite state HMM)

Probability of a Rule

- Rule $r(i): A \rightarrow a;$
- Let R_A be the set of all rules r(j), which have nonterminal A at the left-hand side;
- Then define probability distribution on R_A :

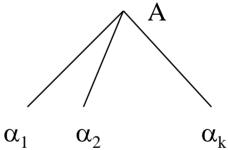
$$\sum_{r \in R_A} p(r) = 1, \ 0 \le p(r) \le 1$$

- Another point of view:
- p(a|A) = p(r), where $r = A \rightarrow a$, $a \in (N \cup T)^+$

Estimating Probability of a Rule

- MLE from a treebank following a PCFG grammar
- Let $r = A \rightarrow a_1 a_2 \dots a_k$:
 - -p(r) = c(r) / c(A)
 - Counting rules c(r): how many instances appear in a treebank
 - Counting nonterminals c(A):

just count them in the treebank



Treebanks

- A collection of example parses by experts
- A commonly used treebank is the Penn Treebank http://www.cis.upenn.edu/~treebank/
- The induction problem is now that of extracting the grammatical knowledge that is implicit in the example parses
- Treebanks for other languages

Probability of a Derivation Tree

- Probabilistic CFG:
 - relations among a mother node & daughter nodes
 - in terms of expansion [rewrite,derivation] probability
 - define probability of a derivation (i.e. parse) tree:

 $P(T) = \prod_{i=1..n} p(r(i))$

- *r(i)* are all rules of the CFG used to generate the sentence *W* of which *T* is a parse
- Probability of a string $W = (w_1, w_2, ..., w_n)$?
- Non-trivial, because there may be many trees T_j as a result of a parsing W

Probability of a String with a D-Tree

• Input string: W

• Parses:
$$\{d_j\}_{j=1..n} = \text{Parse}(W)$$

$$P(D) = \sum_{j=1..n} P(d_j)$$

• Hard to use the naive method

Example PCFG

#1 S \rightarrow NP VP 1.0 S 0.4 $#2 \text{ VP} \rightarrow \text{V} \text{ NP} \text{ PP}$ 0.6 0.6 $#3 \text{ VP} \rightarrow \text{V} \text{ NP}$ NP 1.0 #4 NP \rightarrow N 0.7VP0.3 $#5 \text{ NP} \rightarrow \text{N PP}$ 0.3 PP NP PP Ν \mathbf{V} $#6 PP \rightarrow PREP N$ 1.0 0.7 0.7 1.00.3 #7 N \rightarrow a_dog 1.0PREP N 0.5 $#8 \text{ N} \rightarrow a_\text{cat}$ Ν Ν PREP Ν #9 N \rightarrow a_telescope 0.2 0.3 | 1.0 | 0.5 +1.00.2 #10 V \rightarrow saw 1.0 #11 PREP \rightarrow with 1.0 P(a_dog saw a_cat with a_telescope) =

 $1 \times .7 \times .4 \times .3 \times .7 \times 1 \times .5 \times 1 \times 1 \times .2 + ... \times .6 ... \times .3 ... = .00588 + .00378 = .00966$

Computing String Probability

5

• a_dog saw a_cat with a_telescope

2 3 4

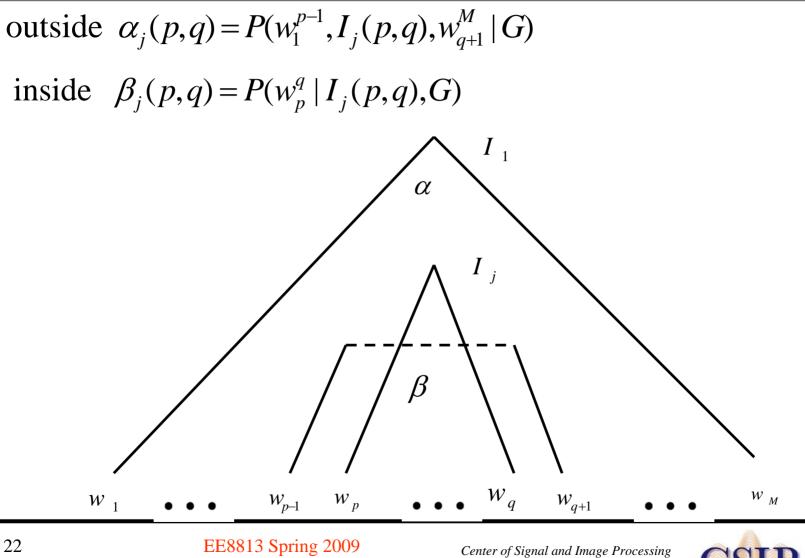
L	2 3	I	J		
from\to	1	2	3	4	5
1	NP.21		S .441		S .00966
	N .3				
2		V 1	VP.21		VP .046
3			NP.35		NP .03
			N .5		
4				PREP 1	PP .2
5					N .2

- Create table n x n (n = length): cells might have more "lines"
- Initialize on diagonal, using $N \rightarrow a$ rules
- Recursively compute along diagonal towards upper right corner

Center of Signal and Image Processing Georgia Institute of Technology

1

Inside and Outside Probabilities



Georgia Institute of Technology

Formula for Inside Probability

$$\beta_N(p,q) =$$

$$\Sigma_{A,B} \Sigma_{d=p..q-1} P(N \rightarrow A,B) \beta_A(p,d) \beta_B(d+1,q)$$

- assuming the grammar G has rules of the form $N \rightarrow w$ (terminal string only) $N \rightarrow AB$ (two nonterminals)
- only (Chomsky Normal Form, or CRF)

Computing Inside Probability

- Terminal-word derivation $\beta_j(k,k) = P(w_k | I_j(k,k),G) = P(I_j \rightarrow w_k | G)$
- Root sentence derivation $P(w_1^M | G) = P(I_1 \rightarrow w_1^M | G) = P(W | I_1(1, M), G) = \beta_1(1, M)$
- Inside Algorithm (Bottom-Up Induction)

$$\beta_{j}(p,q) = P(w_{p}^{q} | I_{j}(p,q),G) \qquad I_{j}$$

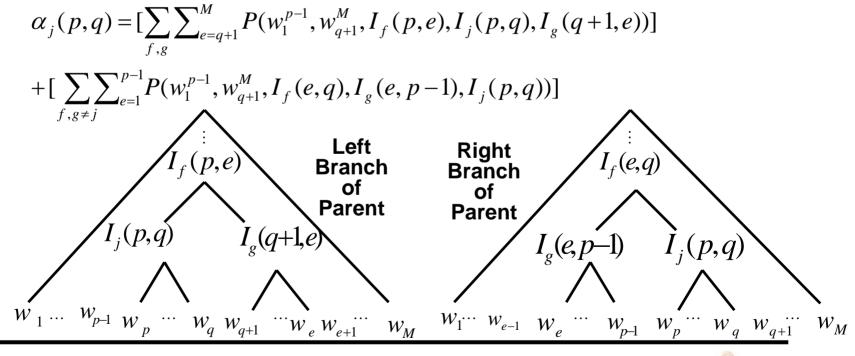
$$= \sum_{r,s} \sum_{l=p}^{q-1} P(w_{p}^{l}, I_{r}(p,l), w_{l+1}^{q}, I_{s}(l+1,q) | I_{j}(p,q),G) \qquad I_{r} \qquad I_{s}$$

$$= \sum_{r,s} \sum_{l=p}^{q-1} P(I_{j} \to I_{r}I_{s}) \beta_{r}(p,l) \beta_{s}(l+1,q) \qquad w_{p} \qquad w_{p} \qquad w_{l} \qquad w_{l+1} \qquad w_{q}$$

Computing Outside Probability

- Terminal derivation $P(w_1^M \mid G) = \sum_j P(w_1^{k-1}, w_k, w_{k+1}^M, I_j(k, k) \mid G) = \sum_j \alpha_j(k, k) P(I_j \rightarrow w_k)$
- Root sentence derivation $\alpha_1(1, M) = 1$ $\alpha_j(1, M) = 0$ $j \neq 1$
- Outside Algorithm (Top-Down Induction)

EE8813 Spring 2009



Computing Outside Prob. (Cont.)

• Outside Algorithm (Top-Down Induction)

$$\alpha_j(p,q) = \left[\sum_{f,g} \sum_{e=q+1}^M \alpha_f(p,e) P(I_f \to I_j I_g) \beta_g(q+1,e)\right]$$

$$+ \left[\sum_{f,g\neq j} \sum_{e=1}^{p-1} \alpha_f(e,q) P(I_f \to I_g I_j) \beta_g(e,p-1)\right]$$

Inside-Outside Probability Product

$$\alpha_{j}(p,q)\beta_{j}(p,q) = P(w_{1}^{M}, I_{j}(p,q) | G)$$
$$= P(w_{1}^{p-1}, I_{j}(p,q), w_{q+1}^{M} | G) * P(w_{p}^{q} | I_{j}(p,q), G)$$

• Is there a bracket from position *p* to *q*?

$$P(w_1^M, I(p,q) | G) = \sum_j \alpha_j(p,q) \beta_j(p,q)$$

• Pre-terminal (Non-terminal parent of a terminal) $P(w_1^M, I(k,k) | G) = \sum_j \alpha_j(k,k) \beta_j(k,k) = \alpha_1(1,M) \beta_1(1,M)$

Decoding the Most Likely Parse

- Computing Optimal Partial Path Scores
 - remember DP recursion (Principle of Optimality) !!
- Initialization $\delta_i(k,k) = P(I_j \rightarrow w_k)$
- DP-Recursion and Bookkeeping $\delta_{j}(p,q) = \max_{1 \le r, s \le N, p \le e < q} [\delta_{r}(p,e)\delta_{s}(e+1,q)P(I_{j} \rightarrow I_{r}I_{s})]$ $\psi_{j}(p,q) = \arg\max_{(r,s,e)} [\delta_{r}(p,e)\delta_{s}(e+1,q)P(I_{j} \rightarrow I_{r}I_{s})]$
- Termination (M-level Parse Tree) $P_{\max} = \max_{1 \le j \le N} \delta_j(1, M)$ and $\hat{d}_M = \underset{1 \le j \le N}{\operatorname{argmax}} \psi_j(1, M)$
- Traceback (left/right branches and break point) $\hat{d}_{m-1} = \psi_{\hat{d}_m}(p,q) = (\hat{r}_m, \hat{s}_m, \hat{e}_m)$ $m = M, M-1, \dots, 2$
- "Optimal" Derivation Sequence: $\hat{\mathbf{t}} = (\hat{d}_1, \dots, \hat{d}_M)$

PCFG Parameter Estimation

- Counting: for each training sentence W(i) $f_i(p,q,j,r,s) = \sum_{e=p}^{q-1} \alpha_j(p,q) P(I_j \rightarrow I_r I_s) \beta_r(p,e) \beta(e+1,q)$ $g_i(l,j,k) = \alpha_j(l,l) P(w_l = w_k) \beta_j(l,l)$ $h_i(p,q,j) = \alpha_j(p,q) \beta_j(p,q)$
- ML Re-estimation of PCFG Parameters

$$\hat{P}(I_{j} \to I_{r}I_{s}) = \frac{\sum_{i=1}^{Q} \sum_{p=1}^{M(i)-1} \sum_{q=p+1}^{M(i)} [f_{i}(p,q,j,r,s) / P(I_{1} \to W(i))]}{\sum_{i=1}^{Q} \sum_{p=1}^{M(i)} \sum_{q=p}^{M(i)} [h_{i}(p,q,j) / P(I_{1} \to W(i))]}$$
$$\hat{P}(I_{j} \to w_{k}) = \frac{\sum_{i=1}^{Q} \sum_{p=1}^{M(i)} \sum_{l=1}^{M(i)} [g_{i}(l,j,k) / P(I_{1} \to W(i))]}{\sum_{i=1}^{Q} \sum_{p=1}^{M(i)} \sum_{q=p}^{M(i)} [h_{i}(p,q,j) / P(I_{1} \to W(i))]}$$

- Solving the fixed point problem: EM algorithm
 - E-step: compute new counts with old parameter estimates
 - M-step: re-estimate parameters with new counts

Some Issues Before Moving On

Problems with PCFG Estimation

- many unsolved research issues: *less studied, more rewards*
- sizes of A and I often unknown: O(M*M*M*Q*Q*Q)
- too little data to estimate too many parameters
- greater A and I imply more estimation & storage problem
- techniques in search, N-gram and HMM can be extended

Parsing for Disambiguation and Understanding?

- probabilities for determining the sentence
- probabilities for speedier parsing (pruning efficiency)
- probabilities for choosing between parses (ranking/scoring)

• Labeled Corpus for Learning - Treebank

- chunking (bracketing): the first step to studying parsing
- Penn Treebank: widely used, large size; other languages?

Summary

- Today's Class
 - Probabilistic Context Free Grammar
- Next Classes
 - Statistical Parsing
 - Lab 6 assigned
 - Project monitoring
- Reading Assignments
 - Manning and Schutze, Chapters 11-12

