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Course Information
• Subject: Statistical Language Processing
• Prerequisite: ECE3075, ECE4270
• Background Expected

– Basic Mathematics and Physics
– Digital Signal Processing
– Basic Discrete Math, Probability Theory and Linear Algebra

• Tools Expected:
– MATLAB and other Programming Tools
– Language-specific tools will be discussed in Class

• Teaching Philosophy
– Textbooks and reading assignments: your main source of learning
– Class Lectures: exploring beyond the textbooks  
– Homework: hand-on and get-your-hands-dirty exercises
– Class Project: a good way to go deeper into a particular topic

• Website: http://users.ece.gatech.edu/~chl/ECE8813.sp09
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Probability Tools: An Overview
• Why probabilistic approach?

– probabilistic vs. deterministic description of events
– model-based vs. rule-based inference (scores)
– natural way to summarize a large collection of data with 

a small set of parameters (corpus-based)
– taking advantage of existing theory and methods
– moving from subjective to objective evaluation
– moving from theory to computation and realization

• Historic Perspective
– speech science vs. statistical approach
– new trend in computational linguistics
– combining rules and models: a win-win story
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Some Definitions

• Sample Space:
– collection of all possible observed outcomes 

• Sample Event:             including null event
• -field: set of all possible events
• Probability Function (Measurable)
• Three Axioms:

–

– If then
– If                    then
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Some Examples
• Sample Space:

– = {x: x is the height of a person on earth}
– = {(y, z): y is the age and z is resident city}

• Sample Event: 
– A={x: x>200cm}
– B={x: 120cm<x<130cm}
– C={(teens; Shenzhen or Hong Kong)}
– D={(over 70; Japan)}

• -field: set of all possible events
• Probability Function (Measurable)

– measuring A, B, C and D; computing P(A), P(B), P(C) 
and P(D); inference about A, B, C, and D
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Conditional Events
• Prior Probability

– probability of an event before considering any additional 
knowledge or observing any samples: P(A)

• Conditional Probability
– updated probability of an event given some knowledge about 

another event: P(A|B)

• Prove the Addition Rule:
• From Multiplication Rule, Show Chain Rule:

• Approximating Language Probabilities: 
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Bayes’ Theorem
• Swapping dependency between events

– calculate P(B|A) in terms of P(A|B) that is available and more 
relevant in some cases

• In many cases, not important to compute P(A)

• Another Form of Bayes’ Theorem (try n=2)
– If a set B partitions A, i.e.
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Random Variable (Vector)
• A function that maps sample space to a n-dimensional 

space of real numbers for easy manipulation (sample 
space can be irregular)
– linking events to numerical values

• Discrete Random Variable
– mapping events to a subset of integer numbers, e.g. Bernoulli 

trial: 0 for success and 1 for failure (binomial distribution)
• Probability Mass Function (pmf)

• Exercise: define a random variable as the product of 
the dots on two dices, define the outcome space of 
the r.v. and derive the pmf

nX ℜ→Ω:
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Continuous Random Variable (Cont.)

• Mapping events to real numbers
• Probability Density Function (pdf)

• Probability Distribution Function

• Expectation of Random Functions

• Mean and Variance

• Covariance between two r.v.’s
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Joint and Conditional Distribution

• Joint Event and Product Space
– e.g. E=(A,B)=(200cm<height, live in Pakistan)

• Joint pmf and pdf of two random variables

• Marginal pmf and pdf
• Conditional pmf and pdf

• Conditional Expectation

• Conditional Mean:
• Independence:
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Some Useful Distributions (I)

• Binomial Distribution: B(R=r; n, p)
– probability of r successes in n trials with a success rate p

• Multinomial Distribution

• Show:

• Can you compute Var(R) ? Any explanation?
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Plot of Probability Mass Function

• Binomial distribution: n=3, p=0.7
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Some Useful Distributions (II)

• Uniform Distribution: U(X=x; a, b)

• Normal (or Gaussian) Distribution: Bell Curve

• Show

• Can you compute their variances?
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Typical Normal Distributions
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Some Useful Distributions (III)

• 2-D Uniform Distribution:

• Multivariate Normal Distribution

• Show
• Can you write down the 2-D distribution form, compute 

Cov(X,Y), and derive the marginal and conditional 
densities, f(y) and f(x|y) ?
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Some Distribution Examples
• Uniform distribution over all directions (radar)

Uniform distribution on a circle (sea surface)
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Properties of Gaussian Mixture
• Mixture Gaussian distribution:

x

In theory, MG(x) matches any density up to second 
order statistics (mean and variance)
Approximating multi-modal densities which is more 
likely to describe real-world data

Distribution of cepstrum
over a large population
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Function of Random Variables
• Function of r.v.’s is also a r.v.

– e.g. X=U+V+W, if we know f(u,v,w) how about f(x) ?
– e.g. sum of dots on two dices

• Problem easier for known and popular r.v.’s
– e.g. if U and V are independent Gaussian, so is 

X=U+V
– e.g. if W and Z are independent uniform, is Y=W+Z

uniform?
• Show sample mean of n independent samples of 

Gaussian r.v.’s is also Gaussian, show that:
nXX /)(Var)(E 2σμ ==
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Distributions of Random Variables
• Parametric distributions

– r.v. described by a small number of parameters in pdf/pmf
– e.g. Gaussian (2), Binomial (3), 2-d uniform (3 or 4)
– many useful and known parametric distributions
– distributions of independently and identically distributed (i.i.d.) 

samples from such distributions are easier to derive
• Non-Parametric distributions

– usually described by the data samples themselves
• Sample distribution & histogram (pmf / bar chart)

– counting samples in equally-sized bins and plot them
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Sum of Many Random Variables
• Show average of two independent samples of 

uniform r.v.’s form a triangular shape pdf. How 
about sample mean of n samples? Can you 
imagine what it will be like for very large n ?

• Law of large numbers – Asymptotic Normal pdf
!!
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Parametric Distributions
• Parametric Distribution

– r.v. described by a small number of parameters in pdf/pmf
– e.g. Gaussian (2), Binomial (3), 2-d uniform (3 or 4)
– many useful and known parametric distributions
– distributions of independently and identically distributed (i.i.d.) 

samples from such distributions are easier to derive
• Non-Parametric Distribution

– usually described by the data samples themselves
• Sample distribution & histogram (pmf / bar chart)

– counting samples in equally-sized bins and plot them



22 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Spring 2009

Statistics and Probability
• Statistic: a function of random samples

– E.g. sample mean and variance
• Sufficient Statistics

– A minimum set of summary statistics to describe the 
samples without losing any information, e.g. sample 
mean, variance, and size for Gaussian samples

– For some r.v.’s, the sufficient statistics can only be 
described by the entire set of data samples

– Distributions of sufficient statistics are often 
reproducible which are keys to Bayesian estimation 
with conjugate prior and posterior pairs
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Some Useful Descriptive Statistics
• Sampling theory and descriptive statistics

– From partial observations to overall assessment
• Sample size, mean, variance (margin of error)
• Range, maximum, minimum
• Median, percentile, upper and lower quartiles
• Descriptive statistics are often seen in many 

articles and reports in our daily lives. Do you 
know how to evaluate them and judge their 
validity when certain conclusions are drawn?
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The Art and Science of Sampling
• A few examples

1. Randomly selecting n out of M vendors in Atlanta for evaluation 
to award a construction job

2. Randomly polling Q households for TV rating
3. Randomly selecting parts for error measurement
4. Opinion polls: done a lot in election seasons
5. Sending pilot signals to probe a wireless connection

• Questions
– How many to sample? What’s the population like?
– What can be said about the sampling results?
– How to use probability theory to help?
– How to use computer simulation in sampling?
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(Empirical) Sample Mean & Variance
• Population: collection of data being studied

– N: Size of the population (typically a large size)
– (Random) Sample: n is the size of the sample set:

• Statistic: function of samples (statistical inference)
1. Sample Mean (not the mean parameter):

2. Sample Variance (r. v., not the variance parameter):
1 1
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Important Statistics & Expectations (I)
1. Expectation of sample mean:  

2. Expectation of sample variance (known mean/variance):
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Important Statistics & Expectations (II)
3. Expectation of sample variance (unknown parameters):

4. Unbiased sample variance:
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Other Properties on Statistics
5. Variance of sample variance (unknown parameters):

• Sample mean and sample variance are correlated random 
variables useful for statistical inference
– their joint density can be established (not in ECE3075)

• The same discussion can be extended to multivariate 
cases (studies have been completed for Gaussian cases)

• Discussion on population size N (for your reading)
– Sampling with or without replacement

• Large sample theory (n > 30, depending on individual 
cases)

44 4
2 2 2 2 4
2 2 2

[( ) ]Var[ ] {[ - ( )] }  (your exercise)E X XS E S E S
n n

μ σσ −− −
= = =



29 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Spring 2009

Sampling Distributions (I)
• For many applications, it is important to obtain the 

distribution of a sample statistic. We need to watch for 
assumptions about the random samples before we work 
out sample distributions.
– realize what’s known and unknown

• Example 1: Normalized Sample Mean
– independent Gaussian samples with known variance

– note: Z can not be defined if we don’t know the parameters

2
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Sampling Distributions (II)
• Example 2: Normalized Sample Mean

– independent Gaussian samples with unknown variance

• The pdf of T (assuming v=n-1) is of the form

– for large value of v, we have an approximate Gaussian

2 2
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Correlation between Two Sets of Data
• Linear correlation coefficient (Pearson’s r)

• Pearson’s r approaches Gaussian for large n
– significance of the value of r: small r is often meaningless unless 

the sample size n is large, and f(x, y) is known
– large r implies a tighter coupling between X and Y
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Statistical Inference
• Probability Theory Tools

– Fuzzy description of phenomena
– Statistical modeling of data for inference

• Statistical Inference Problems
– Classification: choose one of the stochastic sources
– Decision and Hypothesis Testing: comparing two stochastic 

assumptions and decide on how to accept one of them
– Estimation: given random samples from an assumed 

distribution, find “good” guess for the parameters
– Prediction: from past samples, predict next set of samples
– Regression (Modeling): fit a model to a given set of samples

• From theory to many real-world applications
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Maximum Likelihood Estimation for Gaussians
• Given iid samples from a normal distribution, what’s their 

joint density (likelihood)?

• It can been shown that the sample mean has also a 
normal distribution, can you derive the density?

• Suppose the mean needs to be estimated form the iid
samples, show the sample mean is the maximum 
likelihood (“best”) estimate of     ? 

• ML is the most frequently used estimation method
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Maximum Likelihood Estimation of N-grams

• Properties of n-grams

• MLE of Multinomial Distribution Parameters
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Hypothesis Testing
• Testing statistical hypotheses

– Decisions in accepting an assumed distribution from test data
– What is the level of confidence in accepting right decisions?
– What is the penalty, if any, for making wrong decisions?

• Formulating statistical tests
– one-sided test: mean = 1000 vs. mean > 1000
– two-sided test: mean = 1000 vs. mean > 1000 or <1000
– Many others (textbooks and handbooks)

• Confidence interval and confidence level in testing
– Larger level of significance corresponds to a more stringent test

• Confidence measures for assumed theories
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Statistical Hypothesis Testing (I)
• In decision, we usuallly need to test a hypothesis based on 

some observation data. The problem is formulated as a test 
between two complementary hypotheses:

– H0: null hypothesis
– H1: alternative hypothesis

• Example: Given                       as a random sample from a 
Gaussian distribution           , where variance       is known.
We need to verify whether its mean is a given value. Thus we 
do hypothesis testing:

– against
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Statistical Hypothesis Testing (II)
• In essence, a hypothesis test will partition the entire 

observation space into two disjointed parts, CC and D
• If an observation X lies in the region CC, we reject H0; if X is 

in D, we accept H0. C is called the critical region
• Type I error (also called false rejection) of a test:

• Type II error (also called false alarm) of a test:
)|Pr()Pr( 01 HCXE ∈==α

2 1 1Pr( ) Pr( | ) 1 Pr( | ) 1E X D H X C Hβ γ= = ∈ = − ∈ = −
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Statistical Hypothesis Testing (III)
NeymanNeyman Pearson LemmaPearson Lemma: 

For a simple H0 and simple H1, if the distributions under 
both H0 and H1 are known, i.e., f0(X|θ0) and f1(X|θ1). Given 
any iid observation data X={X1,…,XT}, at any significance 
level α, the most powerful test is formulated as:
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If , accept H0; otherwise reject H0.

The threshold     is adjusted to make the significance of the test to be α.
If the both pdf’s have the same form, the only difference is parameters, 
The ratio is also called likelihood ratio (LR).
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Distributions of Test Statistic T
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Evaluating Verification (I)
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∞
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Evaluating Verification (II): ROC 
(Receiver Operating characteristic) Curve
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Maximum Likelihood Estimation
• Given iid samples from a normal distribution, what’s their joint 

density (likelihood)?

• It can been shown that the sample mean has also a normal 
distribution, can you derive the density?

• Suppose the mean needs to be estimated form the iid samples, 
show the sample mean is the maximum likelihood (“best”) 
estimate of     ? 

• ML is the most frequently used estimation method
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Probability Theory Recap
• Probability Theory Tools

– fuzzy description of phenomena
– statistical modeling of data for inference

• Statistical Inference Problems
– Classification: choose one of the stochastic sources
– Decision and Hypothesis Testing: comparing two stochastic 

assumptions and decide on how to accept one of them
– Estimation: given random samples from an assumed 

distribution, find “good” guess for the parameters
– Prediction: from past samples, predict next set of samples
– Regression (Modeling): fit a model to a given set of samples
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Probability Theory Recap (Cont.)
• Parametric vs. Non-parametric Distributions

– parsimonious or extensive description (model vs. 
data)

– Sampling, data storage and sufficient statistics
• Real-World Data vs. Ideal Distributions

– “there is no perfect goodness-of-fit”
– ideal distributions are used for approximation
– sum of random variables and Law of Large 

Numbers
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Summary
• Today’s Class

– Probability Theory
– Web: http://www.ece.gatech.edu/~chl/ECE8813.sp09
– Class web page and data will be ready soon

• Next Class
– Information Theory on Jan. 13 
– Reading Assignments

• Manning and Schutze, Chapters 1 & 2
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