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Vector Space Representation
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• Vector distance is a key for moving from qualitative to quantitative
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Document Clustering
WTW = VS2VT

• Semantic similarity between two commands

• From WTW, find document clusters whose 
members have similarity measure exceeding 
a threshold (say 0.95)
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Document Clustering Example

N Korea Proposes Resumed Talks with S Korea-Yonhap
North Korea Proposes Resuming Talks with Seoul
South Korea Set for Key Vote on Approach to North
Korea to Replace Four to Eight Ministers on Friday
S.Korea to Push North Policy Despite Kim Setback

……

• 2000 documents into 100 clusters (one example)
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K-Means Term Clustering Example

oub bank Singapore cent uob db account 
share singtel trade Bangkok manage save 
entity annual ocbc tangible debt sti
keppel custom transact currency deposit 
card sixth citibank integer subscribe 
handset creation loan auditor merger 
autom merge sharehold attract uncondi
asx optu sembawang ibra restructur
singland landlord  uic yaw sgx

• 9492 words into 100 clusters (one example)
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Clustering Techniques

Clustering

Hierarchical Partitional

Single 
Link

Complete 
Link

Square 
Error

Mixture 
Maximization

K-means Expectation 
Maximization

CobWeb
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Technique Characteristics
• Agglomerative vs. Divisive grouping

– Agglomerative: each instance is its own cluster 
and the algorithm merges clusters

– Divisive: begins with all instances in one cluster 
and divides it up

• Hard vs. Fuzzy memborship
– Hard clustering assigns each instance to one 

cluster whereas in fuzzy clustering assigns degree 
of membership



8 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

More Characteristics
• Monothetic vs Polythetic

– Polythetic: all attributes are used simultaneously, e.g., to 
calculate distance (most algorithms)

– Monothetic: attributes are considered one at a time

• Incremental vs Non-Incremental
– With large data sets it may be necessary to consider only 

part of the data at a time (data mining)

– Incremental works instance by instance
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Pattern Representation
• Number of classes
• Number of available patterns

– Circles, ellipses, squares, etc.
• Feature selection

– Which key linguistic property?
• Feature extraction

– Produce new features
– e.g., principle component analysis (PCA)
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Pattern Proximity
• Want clusters of instances that are similar 

to each other but dissimilar to others
• Need a similarity measure
• Continuous case

– Euclidean measure (compact isolated clusters)
– The squared Mahalanobis distance

alleviates problems with correlation
– Many more measures
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K-means Clustering
• Suppose that we have decided how many 

centroids we need - denote this number by K
• Suppose that we have an initial estimate of 

suitable positions for our K centroids
• K-means clustering is an iterative procedure 

for moving these centroids to reduce 
distortion
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K-means Clustering - Notation
• Suppose there are T data points, denoted by:

• Suppose that the initial K clusters are denoted by:

• One iteration of K-means clustering will produce a 
new set of clusters

•
• Such that
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K-means Clustering (1)
• For each data point yt let ci(t) be the closest centroid
• In other words: d(yt, ci(t)) = minmd(yt,cm)
• Now, for each centroid c0

k define:

• In other words, Y0
k is the set of data points which are 

closer to c0
k than any other cluster

( ){ }ktiyY tk == :0



14 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

K-means Clustering (2)
• Now define a new kth centroid c1

k by:

where |Yk
0| is the number of samples in Yk

0

• In other words, c1
k is the average value of the 

samples which were closest to c0
k
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K-means Clustering (3)
• Now repeat the same process starting with the new 

centroids (is this similar to EM):

to create a new set of centroids:

… and so on until the process converges

• Each new set of centroids has smaller distortion 
than the previous set
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So….Basically
• Start with randomly k data points (objects).
• Find the set of data points that are closer to C0

k (Y0
k).

• Compute average of these points, notate C1
k -> new 

centroid.
• Now repeat again this process and find the closest 

objects to C1
k

• Compute the average to get C2
k -> new centroid, and 

so on….
• Until convergence. 
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Comments on K-Means
• Strength

– Relatively efficient: O(tkn), where n is # objects, k is # 
clusters, and t  is # iterations. Normally, k, t << n.

– Often terminates at a local optimum. The global optimum
may be found using techniques such as: deterministic 
annealing and genetic algorithms

• Weakness
– Applicable only when mean is defined, then what about 

categorical data?
– Need to specify k, the number of clusters, in advance
– Unable to handle noisy data and outliers
– Not suitable to discover clusters with non-convex shapes
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Soft K-means
• Instead of making hard assignments of data points 

to clusters, we can make soft assignments. One 
cluster may have a responsibility of .7 for a data 
point and another may have a responsibility of .3 
– Allows a cluster to use more information about the data 

in the refitting step.
– What happens to our convergence guarantee?
– How do we decide on the soft assignments?
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A Generative View of Clustering
• We need a sensible measure of what it 

means to cluster the data well
– This makes it possible to judge different methods
– It may make it possible to decide on the number of 

clusters
• An obvious approach is to imagine that the 

data was produced by a generative model
– Then we can adjust the parameters of the model 

to maximize the probability density that it would 
produce exactly the data we observed
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Generating Gaussians Mixture Data
• Gaussian Mixture Model (GMM) for non-Gaussian data
• First pick one of the k Gaussians with a probability that is 
called its “mixing proportion”
• Then generate a random point from the chosen Gaussian 
with a specific combination of mean and variance
• The probability of generating the exact data we observed is 
zero, but we can still try to approximate the density by

– Adjusting the means of the Gaussians
– Adjusting the variances of the Gaussians on each dimension
– Adjusting the mixing proportions of the Gaussians
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E-step: Computing Probabilities

• In order to adjust the 
parameters, we must first 
solve the inference 
problem: Which Gaussian 
generated each point?

– We cannot be sure, so it’s 
a distribution over all 
possibilities

•Use Bayes theorem to 
get posterior probabilities 2
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M-step: Computing Mixing Proportions
• Each Gaussian gets a 
certain amount of posterior 
probability for each data point
• The optimal mixing 
proportion to use (given 
these posterior probabilities) 
is just the fraction of the data 
that the Gaussian gets 
responsibility for.
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M-step: Computing New Means
• We just take the center-of gravity of the data 
that the Gaussian is responsible for

– Just like in K-means, except the data is weighted by 
the posterior probability of the Gaussian
– Guaranteed to lie in the convex hull of the data

• Could be big initial jump
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M-step: Computing New Variances
• We fit the variance of each Gaussian i,  on each 

dimension d,  to the posterior-weighted data
– Its more complicated if we use a full-covariance 

Gaussian that is not aligned with the axes.
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“The Curse of Dimensionality”
• Why document clustering is difficult

– While clustering looks intuitive in 2 dimensions, 
many of our applications involve 10,000 or more 
dimensions…

– High-dimensional spaces look different: the 
probability of random points being close drops 
quickly as the dimensionality grows

– One way to look at it: in large-dimension spaces, 
random vectors are almost all almost 
perpendicular.  Why?
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Hierarchical Clustering
• Build a tree-based hierarchical taxonomy 

(dendrogram) from a set of unlabeled examples

• One option to produce a hierarchical clustering 
is recursive application of a partition clustering 
algorithm to produce a hierarchical clustering

animal

vertebrate

fish reptile amphib. mammal      worm insect crustacean

invertebrate
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• Agglomerative (bottom-up): 
– Starting with each document being a single cluster
– Eventually all documents belong to the same cluster

• Divisive (top-down): 
– Start with all documents belong to the same cluster 
– Eventually each node forms a cluster on its own

• Does not require the number of clusters k in advance
• Needs a termination/readout condition 

– The final mode in both agglomerative and divisive is of 
no use

Hierarchical Clustering Algorithms
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Hierarchical Agglomerative Clustering
• HAC: Assuming a goodness-of-fit function for 

determining the similarity of two instances
• Starting with all instances in a separate cluster and 

then repeatedly joins the two clusters that are most 
similar until there is only one cluster

Among the current clusters, 
determine the two clusters, ci and cj, that are most similar

Replace ci and cj with a single cluster ci ∪ cj

• The history of merging forms a binary tree or 
hierarchy
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• Dendrogram:  Decomposes 
data objects into a several 
levels of nested partitioning 
(tree of clusters).

• Clustering of the data 
objects is obtained by 
cutting the dendrogram at 
the desired level, then each 
connectedconnected component 
forms a cluster.

A Dendrogram: Hierarchical Clustering
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Dendrogram: Document Example
• As clusters agglomerate, docs likely to fall into a 

hierarchy of “topics” or concepts
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“Closest Pair” of Clusters
• Many variants to defining closest pair of clusters
• “Center of gravity”

– Clusters whose centroids (centers of gravity) are the most cosine-
similar

• Average-link
– Average cosine between pairs of elements

• Single-link
– Similarity of the most cosine-similar (single-link)

• Complete-link
– Similarity of the “furthest” points, the least cosine-

similar
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Key Concerns with HAC
• Key problem: as clusters are being formed, 

how to represent the location of each cluster, 
to tell which pair of clusters is closest?

• Euclidean case: each cluster has a centroid = 
average of its points
– Measure inter-cluster distances by distances of 

centroids
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Single Link Agglomerative Clustering
• Use maximum similarity of pairs:

• Can result in “straggly” (long and thin) clusters due to 
chaining effect.

• After merging ci and cj, the similarity of the resulting 
cluster to another cluster, ck, is:
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A Single Link Example
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Complete Link Agglomerative Clustering

• Use minimum similarity of pairs:

• Makes “tighter,” spherical clusters that are 
typically preferable.

• After merging ci and cj, the similarity of the 
resulting cluster to another cluster, ck, is:
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A Complete Link Example
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Summary: Hierarchical Algorithms
• Single-link

– Distance between two clusters set equal to the 
minimum of distances between all instances

– More versatile
– Produces (sometimes too) elongated clusters

• Complete-link
– Distance between two clusters set equal to maximum

of all distances between instances in the clusters
– Tightly bound, compact clusters
– Often more useful in practice
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Example: Clusters Found
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Computational Complexity
• In the first iteration, all HAC methods need to 

compute similarity of all pairs of n individual instances 
which is O(n2).

• In each of the subsequent (n−2) merging iterations, it 
must compute the distance between the most 
recently created cluster and all other existing 
clusters.
– Since we can just store unchanged similarities

• In order to maintain an overall O(n2) performance, 
computing similarity to each other cluster must be 
done in constant time.
– Else O(n2 log n) or O(n3) if done naively
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Key Notion: Cluster Representative

• We want a notion of a representative point in 
a cluster

• Representative should be some sort of 
“typical” or central point in the cluster, e.g.,
– point inducing smallest radii to docs in cluster
– smallest squared distances, etc.
– point that is the “average” of all docs in the cluster

• Centroid or center of gravity
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Example: n=6, k=3, Closest Pair of Centroids

d1 d2

d3

d4

d5

d6

Centroid after first step.

Centroid after
second step.
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Outliers in Centroid Computation
• Can ignore outliers when computing centroid.
• What is an outlier?

– Lots of statistical definitions, e.g.
– moment of point to centroid > M × some cluster 

moment

Centroid
Outlier

Say 10.
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Group Average Agglomerative Clustering
• Use average similarity across all pairs within the merged 

cluster to measure the similarity of two clusters

• Compromise between single and complete link
• Two options:

– Averaged across all ordered pairs in the merged cluster 
– Averaged over all pairs between the two original clusters

• Some previous work has used one of these options; some 
the other. No clear difference in efficacy
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Computing Group Average Similarity
• Assume cosine similarity and normalized 

vectors with unit length.
• Always maintain sum of vectors in each cluster.

• Compute similarity of clusters in constant time:
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Efficiency: Medoid As Cluster Center
• The centroid does not have to be a document
• Medoid: A cluster representative that is one of 

the documents (not the centroid of the cluster)
• Example: the document closest to the centroid
• One reason this is useful

– Consider the representative of a large cluster 
(>1000 documents)

– The centroid of this cluster will be a dense vector
– The medoid of this cluster will be a sparse vector

• Compare: mean/centroid vs. median/medoid
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Exercise
• Consider agglomerative clustering on n points 

on a line.  Explain how you could avoid n3

distance computations - how many will your 
scheme use?

• An optimal scheme can be worked (a good 
lead to scalar quantization)

• How extension to vector quantization?
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Resources
• Scatter/Gather: A Cluster-based Approach to Browsing Large 

Document Collections (1992)
– Cutting/Karger/Pedersen/Tukey:

http://citeseer.ist.psu.edu/cutting92scattergather.html

• Data Clustering: A Review (1999)
– Jain/Murty/Flynn: http://citeseer.ist.psu.edu/jain99data.html

• A Comparison of Document Clustering Techniques
– Michael Steinbach, George Karypis and Vipin Kumar. TextMining

Workshop. KDD. 2000
• Initialization of iterative refinement clustering algorithms. (1998)

– Fayyad, Reina, and Bradley: 
http://citeseer.ist.psu.edu/fayyad98initialization.html

• Scaling Clustering Algorithms to Large Databases (1998)
– Bradley, Fayyad, and Rein: http://citeseer.ist.psu.edu/bradley98scaling.html
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CobWeb (in Weka)
• Algorithm (main) characteristics:

– Hierarchical and incremental
– Uses category utility
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Category Utility
• If each instance in its own cluster

• Category utility function becomes

• Without k it would always be best for each 
instance to have its own cluster, overfitting!
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Summary
• Today’s Class

– Unsupervised Clustering
• Next Classes

– Quiz on 3/12 (3 problems), Spring Break after that
– More clustering on 3/24
– Text Categorization on 3/26
– Labs 4 (tagging) and 5 (clustering) due after break

• Reading Assignments
– Manning and Schutze, Chapters 14-16 
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