
Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813
Statistical Natural Language Processing

Chin-Hui Lee
School of ECE, Georgia Tech

Atlanta, GA 30332, USA
chl@ece.gatech.edu

ECE8813, Spring 2009

Lectures 14-15: Finite State Grammar
and Part-of-Speech Tagging

2 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Looking Ahead
• PoS Tagging (Lab4)
• Vector Space Representation
• Clustering (Lab 5)
• Text Categorization and IR (Lab 6)
• Probabilistic Context Free Grammar (???)
• Probabilistic Parsing (???)
• Alignment and Machine Trasnlation (???)
• Project Presentation (week before Finals)

3 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Formal Grammar Specification
• Grammar G={A, I, S, D} and Language L(G)

– G is defined by an alphabet set A, an intermediate set I, a root symbol
S, and a set of derivation (production) rules D

– L(G) is the language of the set of sentences generated by G
• Type of String Grammars

– Type 0: free or unrestricted

– Type 1: context-sensitive

– Type 2: context-free

– Type 3: finite state or regular

• Chomsky Normal Form (CNF)
– A context-free language can be replaced by another language in CNF

AzIzD ∈∈→→= γβααβγα ,,},{

string:,}{ βαψθαψβαθβ AIID ∪∈∈→=

AzIzzD ∈∈→→= βααβα ,},{

AIID ∪∈∈→= ψθψθ }{

0
2 3

1

4 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Derivation Sequence: An ExampleDerivation Sequence: An Example

S

VPNP

V NP

ADJ

NAME

Mary
loves

that

person

Rewrite Rules:

1. S NP VP
2. VP V NP
3. VP AUX VP
4. NP ART NP1
5. NP ADJ NP1

7. NP1 N
6. NP1 ADJ NP1

8. NP NAME
9. NP PRON
10. NAME Mary
11. V loves
12. ADJ that
13. N person

NP1

N

5 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

FSG: Specified by Terminal Symbols

• Word word sequence beyond
• Syntax model: a huge network to represent all possible

and valid word sequences (e.g. |V|=60K)
– Finite state network (FSN) approximation of word constraints
– Deterministic or stochastic finite state grammar (FSG)

Uh,
Please

what is

tell me

give me checking

savings

th
e b

ala
nc

e

for
in

account balance.

my

my
checking

savings account.

*

*

*
Deterministic or
Stochastic FSG

6 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

• How to pronounce a six digit sequence?
– Alphabet terminal set: A = {one, two, … , ten,

eleven, … , twenty, … , ninety, hundred, thousand}
– Non-terminal (intermediate) set: I = {digit6, digit3,

digit2, digit1, teens, tys}

FSG: Specified by Non-Terminal Symbols

7 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

FSG Derivation Rules with Non-Terminals)

• 8 Rewrite (Derivation) rules with root S = digit6

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

→
→

→
→

→
→

→
→

=

ninetyORORthirtyORtwentytys
nineteenORORelevenORtenteens

nineORORtwoORonedigit
digitORdigittysORtysORteensdigit

digitORhundreddigitdigit
digithundreddigitdigit

digitORthousanddigitdigit
digitthousanddigitdigit

K

K

K1
112

213
213

336
336

D

8 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Other Examples of Grammar Network

Word-loop grammar:

• For all possible sentences.
• Each branch represents a word
in vocabulary
• May add transition proba-bilities
from language models

Grammar for Voice Dialing

9 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Part of Speech Tagging
• The problem of selecting the most likely sequence of

lexical categories for the words in a sentence is
known as part-of-speech tagging
– Tagging is a case of limited syntactic disambiguation: many

words have more than one syntactic category
– Tagging has limited scope: we just fix the syntactic

categories of words and do not do a complete parse
• Tagging is a limited but useful application.

– Partial (shallow) parsing
– Information extraction
– Information retrieval
– Question answering
– Input to statistical parser
– Input to a regular parser (reduces the running time)

10 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Penn Treebank Tag Set
1. CC Coordinating conjunction 19. PP$ Possessive pronoun
2. CD Cardinal number 20. RB Adverb
3. DT Determiner 21. RBR Comparative adverb
4 EX Existential there 22. RBS Superlative Adverb
5. FW Foreign word 23. RP Particle
6. IN Preposition / subord. conj 24. SYM Symbol (math or scientific)
7. JJ Adjective 25. TO to
8. JJR Comparative adjective 26. UH Interjection
9. JJS Superlative adjective 27. VB Verb, base form
10. LS List item marker 28. VBD Verb, past tense
11. MD Modal 29. VBG Verb, gerund/pres. participle

12. NN Noun, singular or mass 30. VBN Verb, past participle
13. NNS Noun, plural 31. VBP Verb, non-3s, present
14. NNP Proper noun, singular 32. VBZ Verb, 3s, present
15. NNPS Proper noun, plural 33. WDT Wh-determiner
16. PDT Predeterminer 34. WP Wh-pronoun
17. POS Possessive ending 35. WPZ Possessive wh-pronoun
18. PRP Personal pronoun 36. WRB Wh-adverb

11 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Tagging Example
• Given an input: The representative put chairs

on the table
• Determine a single tag for each word in the

sentence given the Penn Treebank tag set
• The/DT representative/NN put/VBD

chairs/NNS on/IN the/DT table/NN ./
• Most words have more than one tag, so in

tagging we try to assign the most likely tag to
each word in a sentence

12 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Baseline Tagging Accuracy
• In general, if you always select the most likely

part of speech for a word in the training data, it is
easy to obtain a 90% success rate largely
because approximately 50% of the words in a
typical corpus are not ambiguous. Hence, this is
a baseline against which a good model must
measure itself.

• It is possible to do better than 90% accuracy by
using more information from the sentence a
word appears in. For example, if a word follows
a determiner, it is not likely that it is a verb.

13 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Information Sources
• Syntagmatic: look at the tags assigned to nearby

words; some combinations are highly likely while
others are highly unlikely or impossible
– DT JJ NN
– DT JJ VBP

• Lexical: look at the word itself. (90% accuracy
just by picking the most likely tag for each word)
– Verb is more likely to be a noun than a verb

14 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Early Approaches
• Two stage process:

– Lookup the word in the dictionary and assign each
word the list of possible tags

– Use a set of handwritten rules to select tag given
• word forms: context and current position
• tags (individual or sets): context and current position
• Example: DTeq,-1,Tag Þ NN

• Tagging by Parsing: Assign all tags, and let
the parsing process keep the tags that are
allowed. Mixed results

15 Center of Signal and Image Processing
Georgia Institute of Technology

Statistical Approaches (Overview)
• Probabilistic:

• HMM
– Merialdo and many more (XLT)

• Maximum Entropy
– DellaPietra et al., Ratnaparkhi, and others

• Neural Networks
• Rule-based:

• TBL (Transformation Based Learning)
– Brill’s tagger

• Decision Trees
• Example-based (memory-based with K-nearest neighbors)

– Daelemans, Zavrel, others

• Feature-based (inflective languages)
• Classifier Combination (Brill)

16 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Problem Mapping of POS Tagging
• Finite state network (FSN) representation

– State (node) space: the set of tags
– Arc: tag transition (probabilities)
– State output: tag-specific word probabilities
– State-sequence: tag sequence

• An example:
The representative put chairs on the table.

AT NN ATNN NN NN

VBVB VBJJ

IN

17 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Noisy
Channel

Tags T Words W

Statistical POS Tagging

Channel
Decoding

Words W Tags T

)()|(maxarg
)|(maxargˆ

TPTWP
WTPT

T

T

Ψ∈

Ψ∈

=
=

P(W|T): tag-specific word LM

P(T): tag language model

• Bigram tag language model approximation

• Localized tag-specific language model

• Overall approximation

1)|()|()()(01111 =≈= −=∏ ttPttPtPTP q
Q

q q
Q

)|()|()|()|(
11111 q

Q

q q
nQ

q q
QQ twPtwPtwPTWP ∏∏ ==

≈≈=

)|()|(maxarg)()|(maxargˆ
111

1
−=∏≈= qqq

Q

q qtT
Q ttPtwPTPTWPt Q

18 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Notation
wi: word at position i
ti: tag assigned to word at
position i
wi,i+m: words at positions i
though i+m
wl: lth word in the lexicon
tj: jth tag in the tag set
C(*): the number of
occurrences of * in the
training data

N: number of tags in the
tag set
M: number of words in the
lexicon
n: sentence length

19 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

A Tagging HMM Model
• N states corresponding to tags, or (n-1)-tuples of tags

if n-gram tag model is used: t1, t2, …,tN
• M word observations
• B: N × M matrix; for each state, there is a probability

density function for each word.
– bij={W=wj | T = ti)
– output (words) emitted by states

• A: N × N matrix; transition probability distribution
(between tags)

• ∏: N-dim vector; initial sate probability distribution
(where do we start?)

20 Center of Signal and Image Processing
Georgia Institute of Technology

The Equations
• The goal is to assign lexical tags to a sequence of

words w1,n such that the probability of the assignment
is maximized.

• w1,n is a sequence of words (in a sentence of length n)
to assign a sequence of lexical tags t1,n that
maximizes P(t1,n | w1,n).

• Use argmaxt1,n P(t1,n | w1,n) =
argmaxt1,n [P(t1,n) × P(w1,n | t1,n)]/ P(w1,n)

• Since the goal is to find the t1,n that maximizes the
probability, the denominator can be ignored:
argmaxt1,n P(t1,n) × P(w1,n | t1,n)

21 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

The Equations (Cont.)
• Two probabilities to calculate:

– P(t1,n) = Pi=1..n p(ti|t1,...,ti-1)
– P(w1,n | t1,n) = Pi=1..n p(wi|w1,...,wi-1,t1,...,ti)

• Too many parameters to estimate.
• Approximations based on the following assumptions:

– Tag depends on limited history:
• p(ti|t1,...,ti-1) => p(ti|ti-n+1,...,ti-1)

– Words do not depend on the context, only on the
current tag:

• p(wi|w1,...,wi-1,t1,...,ti) => p(wi|ti)

22 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

The Equations (Cont.)
• Consider P(t1,n). It can be approximated by using

probabilities that are based on a limited number of
prior tags. Recall that an n-gram model looks at the
probability of a tag for the current word given the
previous n-1 tags
– A bigram model looks at pairs of tags: P(ti|ti-1).
– A trigram model looks at triples of tags: P(ti|ti-2,ti-1).

• Using bigrams: P(t1,n) ≈ ∏i=1,n P(ti|ti-1)
• To account for the beginning of the sentence, we can

create a pseudo-tag ø at position 0 as the value of t0.
For example:
P(ART N V N) ≈ P(ART|ø) × P(N|ART) × P(V|N) × P(N|V)

23 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

The Equations (Cont.)
• Consider P(w1,n|t1,n). If we assume that a word

appears with a tag independently of the words of the
surrounding tags, then we obtain the following:
P(w1,n|t1,n) ≈ ∏i=1,n P(wi|ti)

• Combining the two pieces, we obtain the following
equation: ∏i=1,n P(ti|ti-1) × P(wi|ti)

• The advantage of this equation is that the
probabilities are easily obtained from a corpus
labeled with tags

24 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

A Markov Chain Model for PoS Sequences
• Markov Chain Model for language modeling

– Each tag is a Markov state, a total N states (vocabulary size)
– A set of tag transition probability

• Given any a sentence: convert it to tag sequences
(WordNet)

WW = “I want to fly from Atlanta to Toronto tomorrow.”
T=“PN VB TO VB IN NN IN NN RB.”

• 1st-order Markov model: N*N conditional probabilities
Pr(T) = p(PN|begin)*p(VB|PN)*p(TO|VB)*p(VB|TO) …

• 2nd-order Markov model: N*N*N
Pr(T) = p(PN|begin)*p(VB|PN,begin)*p(TO|VB,PN)*p(VB|TO,VB)* …

• N-th model: a large number of probabilities to be estimated

25 Center of Signal and Image Processing
Georgia Institute of Technology

Supervised Learning (with Annotated Data)

• Use MLE
p(wi|ti) = cwt(ti,wi) / ct(ti)
p(ti|ti-n+1,...,ti-1) = ctn(ti-n+1,...,ti-1,ti) / ct(n-1)(ti-n+1,...,ti-1)

• Smooth (both!)
p(wi|ti): “Add 1” for all possible tag,word pairs using a

predefined dictionary (thus some 0 kept!)

p(ti|ti-n+1,...,ti-1): linear interpolation: e.g. for trigram model:
p’l(ti|ti-2,ti-1) = l3 p(ti|ti-2,ti-1) + l2 p(ti|ti-1) + l1 p(ti) + l0 / |VT|

26 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Estimating Probabilities
• To estimate the needed probabilities, we must use

large samples of training data (independent of the
test data)

• Derive from a training corpus the ratio of the total
number of occurrences of an event to the total
number of occurrences of all events of that type and
use it as the probability. This simple ratio is known
as the maximum likelihood estimator (MLE). For
example, if we see 100 occurrences of the word "foo"
in the corpus, with 60 as nouns, 20 as verbs, and 20
as adjectives, then an MLE of Pr(N|foo) is 0.6

27 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Estimating Probabilities (Cont.)
• The accuracy grows as the amount of data grows
• Unfortunately, there are many estimates needed and

sparse data for less likely events presents a problem.
For example, in the Brown corpus, some 40,000 words
appear 5 time or less, and so part of speech estimates for
those words could be quite inaccurate

• In the worst case, a low frequency word does not appear
in the corpus at all. These rare events are common in
NLP applications

• We have already investigated methods that address the
problem of zero probabilities while retaining the relative
likelihoods for occurring items, namely smoothing

28 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Obtaining Probabilities
Syntagmatic Probabilities:
For all tags tj do

For all tags tk do
P(tk | tj)=C(tj, tk)/C(tj)

End
End

Lexical Probabilities:
For all tags tj do

For all words wl do
P(wl | tj)=C(wl, tj)/C(tj)

End
End

29 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Estimation of Syntagmatic Probabilities
• The syntagmatic bigrams, P(ti|ti-1), are estimated by

counting the number of times each pair of tags
occurs compared to individual tag counts. For
example, the probability that a V follows an N is
estimated as follows:
P(ti=V|ti-1=N) = C(N @ POSi-1 & V @ POSi) | C(N @ POSi-1)

• The bigram probabilities for an artificially generated
corpus of sentences containing only four tags (i.e., N,
V, Art, and P) are shown on the next slide. There
are 1,988 words in the corpus: 833 N, 300 V, 558 Art,
and 307 P. To deal with sparse data in our example,
any bigram not listed will assume a token probability
of .0001

30 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Syntagmatic Probability Estimates

Category Count at i Pair Count at i, i+l Bigram Estimate
ø 300 ø, ART 213 P(ART|ø,) .71
ø 300 ø, N 87 P(N|ø,) .29
ART 558 ART, N 558 P(N|ART) 1
N 833 N, V 358 P(V|N) .43
N 833 N, N 108 P(N|N) .13
N 833 N, P 366 P(P|N) .44
V 300 V, N 75 P(N|V) .35
V 300 V, ART 194 P(ART|V) .65
P 307 P, ART 226 P(ART|P) .74
P 307 P, N 81 P(N|P) .26

31 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

State (Tag) Transition Probabilities

32 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Estimation of Lexical Probabilities
• P(wi|ti) can be estimated by simply counting

the number of occurrences of each word by
tag and dividing by the no. of occurrences of
the tag. For example,
P(the|ART) = C(# times the is an ART)/ C(# times an
ART occurs)

• The table on the next slide gives some counts
of the number of co-occurrences of each
word and tag

33 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Word/Tag Counts
 N V ART P TOTAL
flies 21 23 0 0 44
fruit 49 5 1 0 55
like 10 30 0 21 61
a 1 0 201 0 202
the 1 0 300 2 303
flower 53 15 0 0 68
flowers 42 16 0 0 58
birds 64 1 0 0 65
others 592 210 56 284 1142
TOTAL 833 300 558 307 1998

34 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Lexical Probability Estimates (Cont.)

P(the|ART) .54 P(a|ART) .360
P(flies|N) .025 P(a|N) .001
P(flies|V) .076 P(flower|N) .063
P(like|V) .1 P(flower|V) .05
P(like|P) .068 P(birds|N) .076
P(like|N) .012

Note that P(the|ART) = .54 is quite different
than P(ART|the) = 300|303

The table below gives the lexical probabilities which
are needed for our example:

35 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

The HMM Tagger
• The Markov Chain on slide 21 can be extended to

include the lexical output probabilities (i.e., P(w|t)).
For example, node N in the network would be
associated with a probability table that indicates for
each word how likely that word is to be selected if we
randomly selected an N

• It is no longer trivial to compute the probability of a
sequence of words from the network. However, if we
are given a particular sequence, the probability that it
generates a particular output is easily computed by
multiplying together:
1. the probabilities on the path
2. the probability of each output

36 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

The Probability of a State Sequence
• For example, the probability that the sequence: N V

ART N generates the output "Flies like a flower" is
computed by determining:
― Probability that the output is "Flies like a flower" by using

the lexical output probabilities: P(flies|N) × P(like|V) ×
P(a|Art) × P(flower|N)=.025*.1*.36*.063= 5.4*10-5

― P(N V ART N) given the Markov model: P(N V ART N) =
P(N|Ø) × P(V|N) ×P(ART|V) ×P(N|ART)= .29 × .43 × .65 ×
1 = .081

― Multiply the above two numbers together to give the
likelihood that the HMM would generate the sequence

37 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Efficient Tagging
• How to find the most likely sequence of tags for a

sequence of words uses the key insight that you don't
need to enumerate all possible sequences. In fact,
sequences that end in the same tag can be collapsed
together since the next tag depends only on the
current tag in the sequence

• Given the contextual and lexical estimates, we can
use the Viterbi algorithm to avoid using the brute
force method, which for N tags and T words
examines NT sequences

38 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

For "Flies like a flower", there are four words and four
possible tags, giving 256 sequences depicted below.
In a brute force method, all of them would be examined.

An Example

39 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Important Insight
• To find the most likely sequence, we can sweep

forward though the words, one at a time, finding the
most likely sequence for each ending tag. That is,
you first find the four best sequences for the two
words "flies like", one ending in V, one in N, one in
Art, and one in P

• This information is then used to find the four best
sequences for the three words "flies like a", each
ending in a different tag. The process continues until
all of the words are accounted for

• This is the way the Viterbi algorithm, which is given
on the next page, works. If there are n words to be
tagged and N tags, it has a running time of O(KnN2)
given a constant K

40 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Viterbi Notation
• To track the probability of the best sequence leading

to each possible tag at each position, the algorithm
uses δ, an N×n array, where N is the number of tags
and n is the number of words in the sentence. δt(ti)
records the probability of the best sequence up to
position t that ends with the tag, ti

• To record the actual best sequence, it suffices to
record only the one preceding tag for each tag and
position. Hence, another array γ, an N×n array, is
used. γt(ti) indicates for the tag ti in position t which
tag at position t-1 is in the best sequence

41 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Viterbi Algorithm
• Given the word sequence w1,n, the lexical tags

t1,N, the lexical probabilities P(wt|tt), and the
bigram probabilities P(ti|tj), find the most likely
sequence of lexical tags for the word sequence

Initialization Step:
For i= 1 to N do // For all tag states t1,N

δ1(ti) = P(w1|ti) × P(ti|ø)
γ1(ti) = 0 // Starting point

42 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Viterbi Algorithm
Iteration Step:
For f=2 to n // next word index
For i= 1 to N // tag states t1,N

δf(ti) = maxj=1,N (δf-1(tj) × P(ti | tj)) × P(wf| ti))
γf(ti) = argmaxj=1,N (δf-1(tj) × P(ti | tj)) × P(wf| ti)) //index that gave max

Sequence Identification Step:
Xn = argmaxj=1,N δn(tj) // Get the best ending tag state for wn
For i = n-1 to 1 do // Get the rest

Xi = γi+1(Xi+1) // Use the back pointer from subsequent state

P(X1,…, Xn) = maxj=1,N δn(tj)

43 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Example
• Consider an example which uses the transition and

lexical probabilities, assuming that any transition
probability which is not given in the figure on slide 21
receives a probability of .0001. Consider how the
algorithm works with the sentence, Flies like a flowerThe
initialization phase uses the formula:
δ1(ti) = P(Flies | ti)×P(ti |ø) where ti ranges over four tags

• Because of the lexical probabilities, only entries for an N
and V are greater than 0. Thus the most likely
sequences are shown on the left-hand side of the figure
on the next slide (δ1(V)=.076×.0001= .0000076 and
δ1(N)=.29×.025=.00725)

44 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Example (Cont.)

45 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Example (Cont.)
• The first iteration of the second phase of the algorithm is

shown on right-hand side of the next figure. It extends
the sequences one word at a time, keeping track of the
best sequence found so far to each tag. For example:
δ2(V) = max(δ1(N) ×P(V|N), δ1(V) ×P(V|V)) × P(like|V)

= max(.00725 × .43, 7.6 × 10-6 ×.0001) ×.1
= 3.12×10-4

• Note that the heavy arrows indicate the best sequence
leading up to each node

46 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Example (Cont.)

47 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Second Iteration Step

48 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Final Iteration

49 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Finishing Up
• The highest probability sequence ends in

flower|N. It is simple to trace back from this
node to get the full sequence of N V ART N

• This approach can yield 95% or better
accuracy when using trigram context models

50 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

HMM Tagger Issues
• Unknown Words: Words that do not appear

in the training corpus (or dictionary) need to
be handled by the tagger for robustness
– Assume that the word can have any tag with a

distribution obtained from the entire corpus
– Limit to open class words
– Use Morphology (word affixes)
– Capitalization, hyphenation, affixes

51 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

HMM Issues
• Traditional Trigram Taggers:

– A becomes an N×N×N matrix: aijk is the probability that tk

follows a history of ti tj

• Smoothing: important especially for lexical probabilities
– Add-one method (using a predefined dictionary, so with 0s)

• Linear interpolation of lower order models allows us to
cope with the fact that certain contexts (e.g., the
comma) make longer histories less desirable

• Variable Memory Markov Models: history depends on
the sequence instead of a fixed weighted sum

• Can add context to lexical probabilities: P(wi|ti-1,ti)
– Smoothing becomes more important than ever in this case

52 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

HMM Issues
• Decoding can occur in a right-to-left manner

instead of a left-to-right manner (Church 1988)
– P(t1,n)=P (tn)×P(tn-1,n|tn)×P(tn-2,n-1 |tn-1)× …×P(t1,2 |t2)

• The Viterbi algorithm maximizes the probability of
the state sequence, i.e., P(t1,n | w1,n) maximized);
however, one might also maximize P(ti|w1,n) for all
i (which amounts to summing over different tag
sequences). It can produce incoherent
sequences, so this is usually not done

53 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

HMM Issues
• Manning and Schütze call the tagger we just

presented a Visible Markov Model (VMM) to
distinguish it from taggers that are trained
using Baum-Welch due to the fact that there
is no labeled training data

• In general, it is better to use supervised
training without using Baum-Welch
Reestimation if there is a sufficiently large
labeled corpus available

54 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Transformation-Based Tagging
• Exploit wider range of lexical and syntactic

regularities
• Condition the tags on preceding words not just

preceding tags
• Use more context than bigram or trigram

55 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Transformations
• A transformation consists of two parts, a triggering

environment and a rewrite rule.

• Examples of some transformations learned in transformation-based
tagging

Source tag Target tag triggering environment

NN VB previous tag is TO

VBP VB one of the previous three tags is MD

JJR RBR next tag is JJ

VBP VB one of the previous two words is n’t

56 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Learning Algorithm
• The learning algorithm selects the best

transformations and determines their order of
application

• Initially tag each word with its most frequent tag
• Iteratively we choose the transformation that reduces

the error rate most
• We stop when there is no transformation left that

reduces the error rate by more than a pre-specified
threshold

57 Center of Signal and Image Processing
Georgia Institute of Technology

Unknown Words
• “OOV” words (out-of-vocabulary)

– we do not have list of possible tags for them
– and we certainly have no output probabilities

• Solutions:
– try all tags (uniform distribution)
– try open-class tags (uniform, unigram distribution)
– try to “guess” possible tags (based on

suffix/ending) - use different output distribution
based on the ending (and/or other factors, such as
capitalization)

58 Center of Signal and Image Processing
Georgia Institute of Technology

Transformation-Based Learning (TBL)
• TBL tagging (Brill 1995) encodes complex

interdependencies between words and tags by selecting
and ordering transformations that move an imperfectly
tagged sequence to one that has fewer errors

• TBL taggers have two components:
– A specification of which error correcting transformations are

admissible
– A learning algorithm

• TBL facts:
– Input: tagged corpus (ground truth) and dictionary
– Initially tag each word in some way (using the dictionary)
– Lists of transformations to improve the accuracy

59 Center of Signal and Image Processing
Georgia Institute of Technology

The General Scheme

Training Tagging
Annotated
training data

Plain text
training data

LEARNER

Rules learned

TAGGER

Data
to annotate

Automatically
tagged data

training iterations

Annotation
Attempt

60 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

TBL Tagger
• Not a source channel view
• Not even a probabilistic model (no “numbers” used

when tagging a text after a model is developed)
• It is however statistical in the sense that:

– uses training data (combination of supervised [manually
annotated data available] and unsupervised [plain text, large
volume] training)

– learning [rules]
– criterion: accuracy (that’s what we are interested in in the

end, after all!)
• Can be converted to a Finite State Transducer to

gain tagging speed (Roche and Schabes, 1995)

61 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Transformations
• A transformation consists of a triggering environment

and a rewrite rule (much like a production system)
• A rewrite rule transforms a tag in context into another

tag, e.g., t1→t2 is a rewrite rule meaning that tag 1 is
replaced by tag 2

• Some of the triggering environments that Brill found
important are depicted on the next slide. For
example tj occurs in one of the prior two positions.
Can involve both tags and words

• Example, if one of the three previous tags is MD then
VBP→VB

62 Center of Signal and Image Processing
Georgia Institute of Technology

Morphology-Triggered Rules
• Morphology (tagging environment): change

tag at position i from a to b given a condition,
specified by a pool of rules (templates)

• Example:
– wi has suffix -ied
– wi has prefix re-

wi-3 wi-2 wi-1 wi wi+1 wi+2 wi+3

ti-3 ti-2 ti-1 ti ti+1 ti+2 ti+3

63 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Notation
• Ck refers to the tagging of the corpus at

iteration k
• E(Ck) is the number of words mistagged in

corpus Ck

• The stopping condition threshold is denoted ∈
• The error is measured with respect to a tagged

corpus (the ground truth)

64 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

TBL Learning Algorithm
• C0 is a corpus with each word tagged (e.g.,

with its most frequent tag)
• For k=0 step 1 do

v = transformation ui that minimizes E(ui(Ck))
If (E(Ck) - E(v(Ck))) < ∈ then break
Ck+1= v(Ck)
τk+1= v

• Output τ1, τ2, τ3 …, τk

65 Center of Signal and Image Processing
Georgia Institute of Technology

The Initial Assignment of Tags
• Several possible ways to initialize:

– random
– most frequent word class (NN)
– the most frequent tag for a given word form
– use an HMM tagger for the initial assignment

• The algorithm is not particularly sensitive to
the initial assignments

66 Center of Signal and Image Processing
Georgia Institute of Technology

The I/O of an Iteration

• Input (iteration i):
– Intermediate data (initial or the result of previous

iteration)
– The TRUTH (the annotated training data)
– [pool of possible rules]

• Output:
– One rule rselected(i) to enhance the set of rules learned

so far
– Intermediate data (input data transformed by the rule

learned in this iteration, rselected(i))

67 Center of Signal and Image Processing
Georgia Institute of Technology

The Learner

Annotated
training data

Remove tags

Assign initial
tags

Data without
annotation

Interim
annotation

Interim
annotation

Interim
annotation

(THE “TRUTH”)

Iteration 1 Iteration 2

Iteration n

Interim
annotation

RULES

Add
 ru

le
1

A
dd

 ru
le

 2

A
dd

ru
le

 n

68 Center of Signal and Image Processing
Georgia Institute of Technology

The Error Criterion
• Error rate:

– beginning of an iteration: some error rate Ein
– each possible rule r, when applied at every data

position:
• makes an improvement somewhere in the data (cimproved(r))
• makes it worse at some places (cworsened(r))
• and, of course, does not touch the remaining data

• Rule contribution to the reduction of the errors:
• contrib(r) = cimproved(r) - cworsened(r)

• Rule selection at iteration i:
• rselected(i) = argmaxr contrib(r)

• New error rate: Eout = Ein - contrib(rselected(i))

69 Center of Signal and Image Processing
Georgia Institute of Technology

The Stopping Criterion
• When to stop:

– no improvement can be made
• contrib(r) = 0

– or improvement too small
• contrib(r) < Threshold

• Setting a reasonable threshold is advisable,
although not subject to overfitting.

• Heldout?
– remove rules that degrade performance on H

70 Center of Signal and Image Processing
Georgia Institute of Technology

Rule Application
Two possibilities:

1. immediate consequences (left-to-right):
data: DT NN VBP NN VBP NN...
rule: NN => NNS / preceded by NN VBP
apply rule at position 4:

DT NN VBP NN VBP NN...
DT NN VBP NNS VBP NN...

Now rule does not apply at position 6 (not NN VBP).
2. delayed (“fixed input”):

use original input for context
the above rule then applies twice

71 Center of Signal and Image Processing
Georgia Institute of Technology

The Tagger
Input:

untagged data
rules (S) learned by the learner

Tagging:
use the same initialization as the learner did
for i = 1..n (n: the number of learned rules)

apply the rule i to the intermediate data,
changing (some) tags

end
the last intermediate data is the output

72 Center of Signal and Image Processing
Georgia Institute of Technology

Modifications

• Unsupervised Modification:
– Use only unambiguous words for evaluation criterion
– Works extremely well for English (95.6% accuracy)
– Does not work for languages with few unambiguous

words
• N-best Modification

– Can update TBL tagger to tag some words with
multiple tags; however, there is no assessment of
how likely each tag is

73 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Factors Affecting Tagging Accuracy

• The amount of training data available (more
is always better)

• The tag set: larger tag sets make the task
harder (more ambiguity)

• Differences between training (and dictionary)
and corpus of application

• Unknown words: the more OOV words, the
lower the accuracy

74 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Examples of Tagging Errors
• Tag with JJ instead of NN: an executive order
• Tag with RB instead of JJ: more important

issues
• Tag with RP rather than IN: He ran up the

staircase.
• Tag with VBN rather than VBD: loan needed

to meet…
• Tag with VBD rather than VBN: loan needed

to meet…

75 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Confusion Matrix

Corr/Ass Tags DT IN JJ NN RB RP VB VBINGOther
DT 99.4 0.3 0.3 0
IN 0.4 97.5 1.5 0.5 0.1
JJ 0.1 93.9 1.8 0.9 0.1 0.4 2.8
NN 2.2 95.5 0.2 0.4 1.7
RB 0.2 2.4 2.2 0.6 93.2 1.2 0.2
RP 24.7 1.1 12.6 61.5 0.1
VB 0.3 1.4 96 2.3
VBING 2.5 4.4 93 0.1

76 Center of Signal and Image Processing
Georgia Institute of Technology

Tagger Evaluation

• Test data (S) previously unseen (during training)
– Change test data often if at all possible! (“feedback

cheating”)
– Error-rate based (tag versus sentence levels)

• Formally:
– Out(w) = set of output “items” for an input “item” w
– True(w) = single correct output (annotation) for w
– Errors(S) = Si=1..|S|d(Out(wi) ¹ True(wi))
– Correct(S) = Si=1..|S|d(True(wi) Î Out(wi))
– Generated(S) = Si=1..|S||Out(wi)|

77 Center of Signal and Image Processing
Georgia Institute of Technology

Evaluation Metrics
• Accuracy: Single output (each word gets a single tag)

– Error rate: Err(S) = Errors(S) / |S|
– Accuracy: Acc(S) = 1 - (Errors(S) / |S|) = 1 - Err(S)

• What if multiple (or no) output?
– Recall: R(S) = Correct(S) / |S|

• proportion target tags the system got
– Precision: P(S) = Correct(S) / Generated(S)

• proportion it got right
– Combination: F measure: F = 1 / (a/P + (1-a)/R)

• a is a weight given to precision vs. recall; for a=.5, F = 2PR/(R+P)

78 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Part-of-Speech Tagging of Sentences

The rep theput chair tableon

AT NN VB NN

oldquickly

RB IN JJ NNAT

• Table 10.1 shows a list of example tags
• Download: http://nlp.stanford.edu/software/tagger.shtml
• Markov model taggers
• Hidden Markov model taggers
• Transformation-based learning of Tags

– Decision trees
– Probabilistic models
– Finite state transducers

a

AT

79 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Applications of Tagging
• Partial Parsing: syntactic analysis
• Information Extraction: tagging and partial parsing

help identify useful terms and relationships between
them

• Information Retrieval: noun phrase recognition and
query-document matching based on meaningful units
rather than individual terms

• Question Answering: analyzing a query to understand
what type of entity the user is looking for and how it is
related to other noun phrases mentioned in the
question

80 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813, Sprint 2009

Summary
• Classes

– Part-of-speech tagging (today)
– Text representation: latent semantic indexing (next)

• Note
– Project summary due on 2/24, let’s start our discussion
– Project plan finalize on 3/3 (presentation on 4/16)
– Lab4 assigned on 2/28 and due on 3/12
– Midterm on 3/12
– Take-home Final (given 4/24, due on midnight 4/26)

• Reading Assignments
– Manning and Schutze, Chapters 10 and 12

	ECE8813�Statistical Natural Language Processing
	Looking Ahead
	Formal Grammar Specification
	Derivation Sequence: An Example
	FSG: Specified by Terminal Symbols
	FSG: Specified by Non-Terminal Symbols
	FSG Derivation Rules with Non-Terminals)
	Other Examples of Grammar Network
	Part of Speech Tagging
	Penn Treebank Tag Set
	Tagging Example
	Baseline Tagging Accuracy
	Information Sources
	Early Approaches
	Statistical Approaches (Overview)
	Problem Mapping of POS Tagging
	Statistical POS Tagging
	Notation
	A Tagging HMM Model
	The Equations
	The Equations (Cont.)
	The Equations (Cont.)
	The Equations (Cont.)
	A Markov Chain Model for PoS Sequences
	Supervised Learning (with Annotated Data)
	Estimating Probabilities
	Estimating Probabilities (Cont.)
	Obtaining Probabilities
	Estimation of Syntagmatic Probabilities
	Syntagmatic Probability Estimates
	State (Tag) Transition Probabilities
	Estimation of Lexical Probabilities
	Word/Tag Counts
	Lexical Probability Estimates (Cont.)
	The HMM Tagger
	The Probability of a State Sequence
	Efficient Tagging
	Important Insight
	Viterbi Notation
	Viterbi Algorithm
	Viterbi Algorithm
	Example
	Example (Cont.)
	Example (Cont.)
	Example (Cont.)
	Second Iteration Step
	Final Iteration
	Finishing Up
	HMM Tagger Issues
	HMM Issues
	HMM Issues
	HMM Issues
	Transformation-Based Tagging
	Transformations
	Learning Algorithm
	Unknown Words
	Transformation-Based Learning (TBL)
	The General Scheme
	TBL Tagger
	Transformations
	Morphology-Triggered Rules
	Notation
	TBL Learning Algorithm
	The Initial Assignment of Tags
	The I/O of an Iteration
	The Learner
	The Error Criterion
	The Stopping Criterion
	Rule Application
	The Tagger
	Modifications
	Factors Affecting Tagging Accuracy
	Examples of Tagging Errors
	Confusion Matrix
	Tagger Evaluation
	Evaluation Metrics
	Part-of-Speech Tagging of Sentences
	Applications of Tagging
	Summary

