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Looking Ahead
• PoS Tagging (Lab4)
• Vector Space Representation
• Clustering (Lab 5)
• Text Categorization and IR (Lab 6)
• Probabilistic Context Free Grammar (???)
• Probabilistic Parsing (???)
• Alignment and Machine Trasnlation (???)
• Project Presentation (week before Finals)
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Formal Grammar Specification
• Grammar G={A, I, S, D} and Language L(G)

– G is defined by an alphabet set A, an intermediate set I, a root symbol 
S, and a set of derivation (production) rules D

– L(G) is the language of the set of sentences generated by G
• Type of String Grammars

– Type 0: free or unrestricted

– Type 1: context-sensitive

– Type 2: context-free 

– Type 3: finite state or regular

• Chomsky Normal Form (CNF)
– A context-free language can be replaced by another language in CNF

AzIzD ∈∈→→= γβααβγα ,,},{

string:,}{ βαψθαψβαθβ AIID ∪∈∈→=

AzIzzD ∈∈→→= βααβα ,},{

AIID ∪∈∈→= ψθψθ }{

0
2 3

1
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Derivation Sequence: An ExampleDerivation Sequence: An Example

S

VPNP

V NP

ADJ

NAME

Mary
loves

that

person

Rewrite Rules:

1.  S      NP VP
2.  VP      V NP
3.  VP      AUX VP
4.  NP      ART NP1
5.  NP      ADJ NP1

7.  NP1      N
6.  NP1      ADJ NP1

8.  NP      NAME
9.  NP      PRON
10.  NAME      Mary
11.  V      loves
12.  ADJ      that
13.  N      person

NP1

N
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FSG: Specified by Terminal Symbols

• Word word sequence beyond
• Syntax model: a huge network to represent all possible 

and valid word sequences (e.g. |V|=60K)
– Finite state network (FSN) approximation of word constraints
– Deterministic or stochastic finite state grammar (FSG)

Uh,
Please

what is

tell me

give me checking

savings

th
e b

ala
nc

e

for
in

account balance.

my

my
checking

savings account.

*

*

*
Deterministic or 
Stochastic FSG
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• How to pronounce a six digit sequence?
– Alphabet terminal set: A = {one, two, … , ten, 

eleven, … , twenty, … , ninety, hundred, thousand}
– Non-terminal (intermediate) set: I = {digit6, digit3, 

digit2, digit1, teens, tys}

FSG: Specified by Non-Terminal Symbols
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FSG Derivation Rules with Non-Terminals)

• 8 Rewrite (Derivation) rules with root S = digit6

⎪
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⎪
⎪

⎭
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⎪

⎬

⎫
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⎪
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⎪

⎩
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⎪
⎪
⎪

⎨

⎧

→
→

→
→

→
→

→
→

=

ninetyORORthirtyORtwentytys
nineteenORORelevenORtenteens

nineORORtwoORonedigit
digitORdigittysORtysORteensdigit

digitORhundreddigitdigit
digithundreddigitdigit

digitORthousanddigitdigit
digitthousanddigitdigit

K

K

K1
112

213
213

336
336

D
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Other Examples of Grammar Network

Word-loop grammar: 

• For all possible sentences. 
• Each branch represents a word 
in vocabulary
• May add transition proba-bilities
from language models

Grammar for Voice Dialing
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Part of Speech Tagging
• The problem of selecting the most likely sequence of 

lexical categories for the words in a sentence is 
known as part-of-speech tagging
– Tagging is a case of limited syntactic disambiguation: many 

words have more than one syntactic category
– Tagging has limited scope: we just fix the syntactic 

categories of words and do not do a complete parse
• Tagging is a limited but useful application.

– Partial (shallow) parsing
– Information extraction
– Information retrieval 
– Question answering
– Input to statistical parser
– Input to a regular parser (reduces the running time)
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Penn Treebank Tag Set
1. CC Coordinating conjunction 19. PP$ Possessive pronoun
2. CD Cardinal number 20. RB Adverb
3. DT Determiner 21. RBR Comparative adverb
4 EX Existential there 22. RBS Superlative Adverb
5. FW Foreign word 23. RP Particle
6. IN Preposition / subord. conj 24. SYM Symbol (math or scientific)
7. JJ Adjective 25. TO to
8. JJR Comparative adjective 26. UH Interjection
9. JJS Superlative adjective 27. VB Verb, base form
10. LS List item marker 28. VBD Verb, past tense
11. MD Modal 29. VBG Verb, gerund/pres. participle

12. NN Noun, singular or mass 30. VBN Verb, past participle
13. NNS Noun, plural 31. VBP Verb, non-3s, present
14. NNP Proper noun, singular 32. VBZ Verb, 3s, present
15. NNPS Proper noun, plural 33. WDT Wh-determiner
16. PDT Predeterminer 34. WP Wh-pronoun
17. POS Possessive ending 35. WPZ Possessive wh-pronoun
18. PRP Personal pronoun 36. WRB Wh-adverb
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Tagging Example
• Given an input: The representative put chairs 

on the table
• Determine a single tag for each word in the 

sentence given the Penn Treebank tag set
• The/DT representative/NN put/VBD 

chairs/NNS on/IN the/DT table/NN ./
• Most words have more than one tag, so in 

tagging we try to assign the most likely tag to 
each word in a sentence
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Baseline Tagging Accuracy
• In general, if you always select the most likely 

part of speech for a word in the training data, it is 
easy to obtain a 90% success rate largely 
because approximately 50% of the words in a 
typical corpus are not ambiguous.  Hence, this is 
a baseline against which a good model must 
measure itself. 

• It is possible to do better than 90% accuracy by 
using more information from the sentence a 
word appears in.  For example, if a word follows 
a determiner, it is not likely that it is a verb. 
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Information Sources
• Syntagmatic: look at the tags assigned to nearby 

words; some combinations are highly likely while 
others are highly unlikely or impossible
– DT JJ NN
– DT JJ VBP

• Lexical: look at the word itself.  (90% accuracy 
just by picking the most likely tag for each word)
– Verb is more likely to be a noun than a verb
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Early Approaches
• Two stage process:

– Lookup the word in the dictionary and assign each 
word the list of possible tags

– Use a set of handwritten rules to select tag given
• word forms: context and current position
• tags (individual or sets):  context and current position 
• Example: DTeq,-1,Tag Þ NN

• Tagging by Parsing:  Assign all tags, and let 
the parsing process keep the tags that are 
allowed.  Mixed results
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Statistical Approaches (Overview)
• Probabilistic:

• HMM
– Merialdo and many more (XLT)

• Maximum Entropy
– DellaPietra et al., Ratnaparkhi, and others

• Neural Networks
• Rule-based:

• TBL (Transformation Based Learning)
– Brill’s tagger

• Decision Trees
• Example-based (memory-based with K-nearest neighbors)

– Daelemans, Zavrel, others

• Feature-based (inflective languages)
• Classifier Combination (Brill)
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Problem Mapping of POS Tagging
• Finite state network (FSN) representation

– State (node) space: the set of tags
– Arc: tag transition (probabilities)
– State output: tag-specific word probabilities
– State-sequence: tag sequence

• An example:
The representative put chairs on the table.

AT NN ATNN NN NN

VBVB VBJJ

IN
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Noisy 
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Tags T Words W

Statistical POS Tagging
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Notation
wi: word at position i
ti: tag assigned to word at 
position i
wi,i+m: words at positions i
though i+m
wl: lth word in the lexicon
tj: jth tag in the tag set
C(*): the number of 
occurrences of * in the 
training data

N: number of tags in the 
tag set
M: number of words in the 
lexicon
n: sentence length
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A Tagging HMM Model
• N states corresponding to tags, or (n-1)-tuples of tags 

if n-gram tag model is used: t1, t2, …,tN
• M word observations
• B: N × M matrix; for each state, there is a probability 

density function for each word.
– bij={W=wj | T = ti)
– output (words) emitted by states

• A: N × N matrix; transition probability distribution 
(between tags)

• ∏: N-dim vector; initial sate probability distribution 
(where do we start?)
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The Equations
• The goal is to assign lexical tags to a sequence of 

words w1,n such that the probability of the assignment 
is maximized.  

• w1,n is a sequence of words (in a sentence of length n) 
to assign a sequence of lexical tags t1,n that 
maximizes P(t1,n | w1,n). 

• Use argmaxt1,n P(t1,n | w1,n) = 
argmaxt1,n [P(t1,n) × P(w1,n | t1,n)]/ P(w1,n) 

• Since the goal is to find the t1,n that maximizes the  
probability, the denominator can be ignored:
argmaxt1,n P(t1,n) × P(w1,n | t1,n)
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The Equations (Cont.)
• Two probabilities to calculate:

– P(t1,n) = Pi=1..n p(ti|t1,...,ti-1)
– P(w1,n | t1,n) = Pi=1..n p(wi|w1,...,wi-1,t1,...,ti)

• Too many parameters to estimate.
• Approximations based on the following assumptions:

– Tag depends on limited history: 
• p(ti|t1,...,ti-1) => p(ti|ti-n+1,...,ti-1)

– Words do not depend on the context, only on the 
current tag:

• p(wi|w1,...,wi-1,t1,...,ti) => p(wi|ti)
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The Equations (Cont.)
• Consider P(t1,n).  It can be approximated by using 

probabilities that are based on a limited number of 
prior tags.  Recall that an n-gram model looks at the 
probability of a tag for the current word given the 
previous n-1 tags
– A bigram model looks at pairs of tags: P(ti|ti-1). 
– A trigram model looks at triples of tags:       P(ti|ti-2,ti-1).  

• Using bigrams: P(t1,n) ≈ ∏i=1,n P(ti|ti-1)
• To account for the beginning of the sentence, we can 

create a pseudo-tag ø at position 0 as the value of t0.  
For example: 
P(ART N V N) ≈ P(ART|ø) × P(N|ART) × P(V|N) × P(N|V)
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The Equations (Cont.)
• Consider P(w1,n|t1,n).  If we assume that a word 

appears with a tag independently of the words of the 
surrounding tags, then we obtain the following: 
P(w1,n|t1,n) ≈ ∏i=1,n P(wi|ti)

• Combining the two pieces, we obtain the following 
equation:  ∏i=1,n P(ti|ti-1) × P(wi|ti)

• The advantage of this equation is that the 
probabilities are easily obtained from a corpus 
labeled with tags
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A Markov Chain Model for PoS Sequences
• Markov Chain Model for language modeling

– Each tag is a Markov state, a total N states (vocabulary size)
– A set of tag transition probability

• Given any a sentence: convert it to tag sequences 
(WordNet)

WW = “I want to fly from Atlanta to Toronto tomorrow.”
T=“PN VB TO VB IN NN IN NN RB.”

• 1st-order Markov model:  N*N conditional probabilities
Pr(T) = p(PN|begin)*p(VB|PN)*p(TO|VB)*p(VB|TO) …

• 2nd-order Markov model: N*N*N
Pr(T) = p(PN|begin)*p(VB|PN,begin)*p(TO|VB,PN)*p(VB|TO,VB)* …

• N-th model: a large number of probabilities to be estimated
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Supervised Learning (with Annotated Data)

• Use MLE
p(wi|ti) = cwt(ti,wi) / ct(ti)
p(ti|ti-n+1,...,ti-1) = ctn(ti-n+1,...,ti-1,ti) / ct(n-1)(ti-n+1,...,ti-1)

• Smooth (both!)
p(wi|ti): “Add 1” for all possible tag,word pairs using a 

predefined dictionary (thus some 0 kept!)

p(ti|ti-n+1,...,ti-1): linear interpolation: e.g. for trigram model:
p’l(ti|ti-2,ti-1) = l3 p(ti|ti-2,ti-1) + l2 p(ti|ti-1) + l1 p(ti) + l0 / |VT| 
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Estimating Probabilities
• To estimate the needed probabilities, we must use 

large samples of training data (independent of the 
test data)

• Derive from a training corpus the ratio of the total 
number of occurrences of an event to the total 
number of occurrences of all events of that type and 
use it as the probability.  This simple ratio is known 
as the maximum likelihood estimator (MLE). For 
example, if we see 100 occurrences of the word "foo" 
in the corpus, with 60 as nouns, 20 as verbs, and 20 
as adjectives, then an MLE of Pr(N|foo) is 0.6
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Estimating Probabilities (Cont.)
• The accuracy grows as the amount of data grows  
• Unfortunately,  there are many estimates needed and 

sparse data for less likely events presents a problem.  
For example, in the Brown corpus, some 40,000 words 
appear 5 time or less, and so part of speech estimates for 
those words could be quite inaccurate  

• In the worst case, a low frequency word does not appear 
in the corpus at all.  These rare events are common in 
NLP applications 

• We have already investigated methods that address the 
problem of zero probabilities while retaining the relative 
likelihoods for occurring items, namely smoothing
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Obtaining Probabilities
Syntagmatic Probabilities:
For all tags tj do

For all tags tk do
P(tk | tj)=C(tj, tk)/C(tj)

End
End

Lexical Probabilities:
For all tags tj do

For all words wl do
P(wl | tj)=C(wl, tj)/C(tj)

End
End
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Estimation of Syntagmatic Probabilities
• The syntagmatic bigrams, P(ti|ti-1), are estimated by 

counting the number of times each pair of tags 
occurs compared to individual tag counts.  For 
example, the probability that a V follows an N is 
estimated as follows: 
P(ti=V|ti-1=N) = C(N @ POSi-1 & V @ POSi) | C(N @ POSi-1)

• The bigram probabilities for an artificially generated 
corpus of sentences containing only four tags (i.e., N, 
V, Art, and P) are shown on the next slide.   There 
are 1,988 words in the corpus: 833 N, 300 V, 558 Art, 
and 307 P.  To deal with sparse data in our example, 
any bigram not listed will assume a token probability 
of .0001
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Syntagmatic Probability Estimates

Category Count at i Pair Count at i, i+l Bigram Estimate
ø 300 ø, ART 213 P(ART|ø,) .71 
ø 300 ø, N 87 P(N|ø,) .29 
ART 558 ART, N 558 P(N|ART) 1 
N 833 N, V 358 P(V|N) .43 
N 833 N, N 108 P(N|N) .13 
N 833 N, P 366 P(P|N) .44 
V 300 V, N 75 P(N|V) .35 
V 300 V, ART 194 P(ART|V) .65 
P 307 P, ART 226 P(ART|P) .74 
P 307 P, N 81 P(N|P) .26 
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State (Tag) Transition Probabilities
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Estimation of Lexical Probabilities
• P(wi|ti) can be estimated by simply counting 

the number of occurrences of each word by 
tag and dividing by the no. of occurrences of 
the tag.  For example,
P(the|ART) = C(# times the is an ART)/ C(# times an 
ART occurs)

• The table on the next slide gives some counts 
of the number of co-occurrences of each 
word and tag
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Word/Tag Counts
 N V ART P TOTAL 
flies 21 23 0 0 44 
fruit 49 5 1 0 55 
like 10 30 0 21 61 
a 1 0 201 0 202 
the 1 0 300 2 303 
flower 53 15 0 0 68 
flowers 42 16 0 0 58 
birds 64 1 0 0 65 
others 592 210 56 284 1142 
TOTAL 833 300 558 307 1998 
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Lexical Probability Estimates (Cont.)

P(the|ART) .54 P(a|ART) .360 
P(flies|N) .025 P(a|N) .001 
P(flies|V) .076 P(flower|N) .063 
P(like|V) .1 P(flower|V) .05 
P(like|P) .068 P(birds|N) .076 
P(like|N) .012   

 
Note that P(the|ART) = .54 is quite different 
than P(ART|the) = 300|303

The table below gives the lexical probabilities which 
are needed for our example:
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The HMM Tagger
• The Markov Chain on slide 21 can be extended to 

include the lexical output probabilities (i.e., P(w|t)).  
For example, node N in the network would be 
associated with a probability table that indicates for 
each word how likely that word is to be selected if we 
randomly selected an N 

• It is no longer trivial to compute the probability of a 
sequence of words from the network.  However, if we 
are given a particular sequence, the probability that it 
generates a particular output is easily computed by 
multiplying together:
1. the probabilities on the path
2. the probability of each output
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The Probability of a State Sequence
• For example, the probability that the sequence: N V 

ART N generates the output "Flies like a flower" is 
computed by determining:
― Probability that the output is "Flies like a flower" by using 

the lexical output probabilities: P(flies|N) × P(like|V) ×
P(a|Art) × P(flower|N)=.025*.1*.36*.063= 5.4*10-5

― P(N V ART N) given the Markov model: P(N V ART N) = 
P(N|Ø) × P(V|N) ×P(ART|V) ×P(N|ART)= .29 × .43 × .65 ×
1 = .081

― Multiply the above two numbers together to give the 
likelihood that the HMM would generate the sequence
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Efficient Tagging
• How to find the most likely sequence of tags for a 

sequence of words uses the key insight that you don't 
need to enumerate all possible sequences.  In fact, 
sequences that end in the same tag can be collapsed 
together since the next tag depends only on the 
current tag in the sequence

• Given the contextual and lexical estimates, we can 
use the Viterbi algorithm to avoid using the brute 
force method, which for N tags and T words 
examines NT sequences
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For "Flies like a flower", there are four words and four
possible tags, giving 256 sequences depicted below. 
In a brute force method, all of them would be examined.

An Example
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Important Insight
• To find the most likely sequence, we can sweep 

forward though the words, one at a time, finding the 
most likely sequence for each ending tag.  That is, 
you first find the four best sequences for the two 
words "flies like", one ending in V, one in N, one in 
Art, and one in P  

• This information is then used to find the four best 
sequences for the three words "flies like a", each 
ending in a different tag.  The process continues until 
all of the words are accounted for

• This is the way the Viterbi algorithm, which is given 
on the next page, works.  If there are n words to be 
tagged and N tags, it has a running time of O(KnN2) 
given a constant K 
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Viterbi Notation
• To track the probability of the best sequence leading 

to each possible tag at each position, the algorithm 
uses δ, an N×n array, where N is the number of tags 
and n is the number of words in the sentence. δt(ti) 
records the probability of the best sequence up to 
position t that ends with the tag, ti

• To record the actual best sequence, it suffices to 
record only the one preceding tag for each tag and 
position.  Hence, another array γ, an N×n array, is 
used.  γt(ti) indicates for the tag ti in position t which 
tag at position t-1 is in the best sequence
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Viterbi Algorithm
• Given the word sequence w1,n, the lexical tags 

t1,N, the lexical probabilities P(wt|tt), and the 
bigram probabilities P(ti|tj), find the most likely 
sequence of lexical tags for the word sequence

Initialization Step:
For i= 1 to N do              // For all tag states t1,N

δ1(ti) = P(w1|ti) × P(ti|ø)           
γ1(ti) = 0                        // Starting point
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Viterbi Algorithm
Iteration Step:
For f=2 to n      // next word index
For i= 1 to N  // tag states t1,N

δf(ti) = maxj=1,N (δf-1(tj) × P(ti | tj)) × P(wf| ti))
γf(ti) = argmaxj=1,N (δf-1(tj) × P(ti | tj)) × P(wf| ti)) //index that gave max

Sequence Identification Step:
Xn = argmaxj=1,N δn(tj)   // Get the best ending tag state for wn
For i = n-1 to 1 do       // Get the rest  

Xi = γi+1(Xi+1)          // Use the back pointer from subsequent state

P(X1,…, Xn) = maxj=1,N δn(tj)
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Example
• Consider an example which uses the transition and 

lexical probabilities, assuming that any transition 
probability which is not given in the figure on slide 21 
receives a probability of .0001.  Consider how the 
algorithm works with the sentence, Flies like a flowerThe
initialization phase uses the formula:
δ1(ti) = P(Flies | ti)×P(ti |ø) where ti ranges over four tags

• Because of the lexical probabilities, only entries for an N 
and V are greater than 0.  Thus the most likely 
sequences are shown on the left-hand side of the figure 
on the next slide (δ1(V)=.076×.0001= .0000076  and 
δ1(N)=.29×.025=.00725)
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Example (Cont.)
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Example (Cont.)
• The first iteration of the second phase of the algorithm is 

shown on right-hand side of the next figure.  It extends 
the sequences one word at a time, keeping track of the 
best sequence found so far to each tag.  For example:
δ2(V) = max(δ1(N) ×P(V|N), δ1(V) ×P(V|V)) × P(like|V)

= max(.00725 × .43, 7.6 × 10-6 ×.0001) ×.1 
= 3.12×10-4

• Note that the heavy arrows indicate the best sequence 
leading up to each node
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Example (Cont.)
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Second Iteration Step
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Final Iteration
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Finishing Up
• The highest probability sequence ends in 

flower|N.  It is simple to trace back from this 
node to get the full sequence of  N V ART N

• This approach can yield 95% or better 
accuracy when using trigram context models
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HMM Tagger Issues
• Unknown Words: Words that do not appear 

in the training corpus (or dictionary) need to 
be handled by the tagger for robustness 
– Assume that the word can have any tag with a 

distribution obtained from the entire corpus
– Limit to open class words
– Use Morphology (word affixes)
– Capitalization, hyphenation, affixes
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HMM Issues
• Traditional Trigram Taggers:

– A becomes an N×N×N matrix: aijk is the probability that  tk 

follows a history of ti tj

• Smoothing: important especially for lexical probabilities
– Add-one method (using a predefined dictionary, so with 0s)

• Linear interpolation of lower order models allows us to 
cope with the fact that certain contexts (e.g., the 
comma) make longer histories less desirable

• Variable Memory Markov Models: history depends on 
the sequence instead of a fixed weighted sum

• Can add context to lexical probabilities: P(wi|ti-1,ti)
– Smoothing becomes more important than ever in this case
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HMM Issues
• Decoding can occur in a right-to-left manner 

instead of a left-to-right manner (Church 1988)
– P(t1,n)=P (tn)×P(tn-1,n|tn)×P(tn-2,n-1 |tn-1)× …×P(t1,2 |t2)

• The Viterbi algorithm maximizes the probability of 
the state sequence, i.e., P(t1,n | w1,n) maximized); 
however, one might also maximize P(ti|w1,n) for all 
i (which amounts to summing over different tag 
sequences).  It can produce incoherent 
sequences, so this is usually not done
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HMM Issues
• Manning and Schütze call the tagger we just 

presented a Visible Markov Model (VMM) to 
distinguish it from taggers that are trained 
using Baum-Welch due to the fact that there 
is no labeled training data

• In general, it is better to use supervised 
training without using Baum-Welch 
Reestimation if there is a sufficiently large 
labeled corpus available
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Transformation-Based Tagging
• Exploit wider range of lexical and syntactic 

regularities
• Condition the tags on preceding words not just 

preceding tags
• Use more context than bigram or trigram
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Transformations
• A transformation consists of two parts, a triggering 

environment and a rewrite rule.

• Examples of some transformations learned in transformation-based 
tagging

Source tag   Target tag          triggering environment

NN              VB                     previous tag is TO

VBP             VB                    one of the previous three tags is MD

JJR              RBR                  next tag is JJ

VBP             VB                    one of the previous two words is n’t
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Learning Algorithm
• The learning algorithm selects the best 

transformations and determines their order of 
application

• Initially tag each word with its most frequent tag
• Iteratively we choose the transformation that reduces 

the error rate most
• We stop when there is no transformation left that 

reduces the error rate by more than a pre-specified 
threshold
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Unknown Words
• “OOV” words (out-of-vocabulary)

– we do not have list of possible tags for them
– and we certainly have no output probabilities

• Solutions:
– try all tags (uniform distribution)
– try open-class tags (uniform, unigram distribution)
– try to “guess” possible tags (based on 

suffix/ending) - use different output distribution 
based on the ending (and/or other factors, such as 
capitalization)
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Transformation-Based Learning (TBL)
• TBL tagging (Brill 1995) encodes complex 

interdependencies between words and tags by selecting 
and ordering transformations that move an imperfectly 
tagged sequence to one that has fewer errors

• TBL taggers have two components:
– A specification of which error correcting transformations are 

admissible
– A learning algorithm

• TBL facts:
– Input: tagged corpus (ground truth) and dictionary
– Initially tag each word in some way (using the dictionary)
– Lists of transformations to improve the accuracy
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The General Scheme

Training Tagging
Annotated
training data

Plain text 
training data

LEARNER

Rules learned

TAGGER

Data
to annotate

Automatically 
tagged data

training iterations

Annotation
Attempt
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TBL Tagger
• Not a source channel view
• Not even a probabilistic model (no “numbers” used 

when tagging a text after a model is developed)
• It is however  statistical in the sense that:

– uses training data (combination of supervised [manually 
annotated data available] and unsupervised [plain text, large 
volume] training)

– learning [rules]
– criterion: accuracy (that’s what we are interested in in the 

end, after all!)
• Can be converted to a Finite State Transducer to 

gain tagging speed (Roche and Schabes, 1995)
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Transformations
• A transformation consists of a triggering environment 

and a rewrite rule (much like a production system) 
• A rewrite rule transforms a tag in context into another 

tag, e.g., t1→t2 is a rewrite rule meaning that tag 1 is 
replaced by tag 2

• Some of the triggering environments that Brill found 
important are depicted on the next slide.  For 
example tj occurs in one of the prior two positions.  
Can involve both tags and words

• Example, if one of the three previous tags is MD then 
VBP→VB
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Morphology-Triggered Rules
• Morphology (tagging environment): change 

tag at position i from a to b given a condition, 
specified by a pool of rules (templates)

• Example: 
– wi has suffix -ied
– wi has prefix re-

wi-3 wi-2 wi-1       wi wi+1 wi+2    wi+3

ti-3 ti-2 ti-1         ti ti+1 ti+2       ti+3
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Notation
• Ck refers to the tagging of the corpus at 

iteration k
• E(Ck) is the number of words mistagged in 

corpus Ck

• The stopping condition threshold is denoted ∈
• The error is measured with respect to a tagged 

corpus (the ground truth)
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TBL Learning Algorithm
• C0 is a corpus with each word tagged (e.g., 

with its most frequent tag)
• For k=0 step 1 do

v = transformation ui that minimizes E(ui(Ck))
If (E(Ck) - E(v(Ck))) < ∈ then break
Ck+1= v(Ck)
τk+1= v

• Output τ1, τ2, τ3 …, τk
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The Initial Assignment of Tags
• Several possible ways to initialize:

– random
– most frequent word class (NN)
– the most frequent tag for a given word form
– use an HMM tagger for the initial assignment

• The algorithm is not particularly sensitive to 
the initial assignments
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The I/O of an Iteration

• Input (iteration i):
– Intermediate data (initial or the result of previous 

iteration)
– The TRUTH (the annotated training data)
– [pool of possible rules]

• Output:
– One rule rselected(i) to enhance the set of rules learned 

so far
– Intermediate data (input data transformed by the rule 

learned in this iteration, rselected(i)) 
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The Error Criterion
• Error rate:

– beginning of an iteration: some error rate Ein
– each possible rule r, when applied at every data 

position:
• makes an improvement somewhere in the data (cimproved(r))
• makes it worse at some places (cworsened(r))
• and, of course, does not touch the remaining data

• Rule contribution to the reduction of the errors:
• contrib(r) = cimproved(r) - cworsened(r)

• Rule selection at iteration i:
• rselected(i) = argmaxr contrib(r)

• New error rate: Eout = Ein - contrib(rselected(i))
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The Stopping Criterion
• When to stop:

– no improvement can be made 
• contrib(r) = 0

– or improvement too small
• contrib(r) < Threshold

• Setting a reasonable threshold is advisable, 
although not subject to overfitting.

• Heldout?
– remove rules that degrade performance on H
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Rule Application
Two possibilities:

1. immediate consequences (left-to-right):
data: DT NN VBP NN VBP NN...
rule: NN => NNS / preceded by NN VBP
apply rule at position 4:  

DT NN VBP NN VBP NN...
DT NN VBP NNS VBP NN...

Now rule does not apply at position 6 (not NN VBP).
2. delayed (“fixed input”):

use original input for context
the above rule then applies twice
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The Tagger
Input:

untagged data
rules (S) learned by the learner

Tagging:
use the same initialization as the learner did
for i = 1..n (n: the number of learned rules)

apply the rule i to the intermediate data, 
changing (some) tags

end
the last intermediate data is the output
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Modifications

• Unsupervised Modification:
– Use only unambiguous words for evaluation criterion
– Works extremely well for English (95.6% accuracy)
– Does not work for languages with few unambiguous 

words
• N-best Modification

– Can update TBL tagger to tag some words with 
multiple tags; however, there is no assessment of 
how likely each tag is
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Factors Affecting Tagging Accuracy

• The amount of training data available (more 
is always better)

• The tag set:  larger tag sets make the task 
harder (more ambiguity)

• Differences between training (and dictionary) 
and corpus of application

• Unknown words: the more OOV words, the 
lower the accuracy
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Examples of Tagging Errors
• Tag with JJ instead of NN:  an executive order
• Tag with RB instead of JJ: more important 

issues
• Tag with RP rather than IN:  He ran up the 

staircase.
• Tag with VBN rather than VBD: loan needed

to meet…
• Tag with VBD rather than VBN: loan needed

to meet…
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Confusion Matrix

Corr/Ass Tags DT IN JJ NN RB RP VB VBINGOther
DT 99.4 0.3 0.3 0
IN 0.4 97.5 1.5 0.5 0.1
JJ 0.1 93.9 1.8 0.9 0.1 0.4 2.8
NN 2.2 95.5 0.2 0.4 1.7
RB 0.2 2.4 2.2 0.6 93.2 1.2 0.2
RP 24.7 1.1 12.6 61.5 0.1
VB 0.3 1.4 96 2.3
VBING 2.5 4.4 93 0.1
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Tagger Evaluation

• Test data (S) previously unseen (during training)
– Change test data often if at all possible! (“feedback 

cheating”)
– Error-rate based (tag versus sentence levels)

• Formally: 
– Out(w) = set of output “items” for an input “item” w
– True(w) = single correct output (annotation) for w 
– Errors(S) = Si=1..|S|d(Out(wi) ¹ True(wi))
– Correct(S) = Si=1..|S|d(True(wi) Î Out(wi))
– Generated(S) = Si=1..|S||Out(wi)|
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Evaluation Metrics
• Accuracy: Single output (each word gets a single tag)

– Error rate: Err(S) = Errors(S) / |S| 
– Accuracy: Acc(S) = 1 - (Errors(S) / |S|) = 1 - Err(S)

• What if multiple (or no) output?
– Recall: R(S) = Correct(S) / |S|

• proportion target tags the system got
– Precision: P(S) = Correct(S) / Generated(S) 

• proportion it got right
– Combination: F measure: F =  1 / (a/P + (1-a)/R)

• a is a weight given to precision vs. recall; for a=.5, F = 2PR/(R+P)
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Part-of-Speech Tagging of Sentences

The rep theput chair tableon

AT NN VB NN

oldquickly

RB IN JJ NNAT

• Table 10.1 shows a list of example tags
• Download: http://nlp.stanford.edu/software/tagger.shtml
• Markov model taggers
• Hidden Markov model taggers 
• Transformation-based learning of Tags

– Decision trees
– Probabilistic models
– Finite state transducers

a

AT
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Applications of Tagging
• Partial Parsing: syntactic analysis
• Information Extraction: tagging and partial parsing 

help identify useful terms and relationships between 
them

• Information Retrieval: noun phrase recognition and 
query-document matching based on meaningful units 
rather than individual terms

• Question Answering: analyzing a query to understand 
what type of entity the user is looking for and how it is 
related to other noun phrases mentioned in the 
question
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Summary
• Classes

– Part-of-speech tagging (today)
– Text representation: latent semantic indexing (next)

• Note
– Project summary due on 2/24, let’s start our discussion
– Project plan finalize on 3/3 (presentation on 4/16)
– Lab4 assigned on 2/28 and due on 3/12
– Midterm on 3/12
– Take-home Final (given 4/24, due on midnight 4/26)

• Reading Assignments
– Manning and Schutze, Chapters 10 and 12
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