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Markov Assumptions
• Let X=(X1, .., XT) be a sequence of random variables 

taking values in some finite set, S={s1, …, sN}, the 
state space.  If X possesses the following properties, 
then X is a Markov Chain

1. Limited Horizon:
P(Xt+1=sk|X1, .., Xt)=P(X t+1 = sk |Xt) i.e., a word’s 
state only depends on the previous state

2. Time Invariant (Stationary):
P(Xt+1=sk|Xt)=P(X2 =sk|X1) i.e., the dependency does 
not change over time
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Definition of a Markov Chain
A is a stochastic N x N matrix

of the probabilities of transitions with:
aij = Pr{transition from si to sj} = Pr(Xt+1=sj | Xt=si)
∀i, j, aij ≥ 0, and ∀t:

Π is a vector of N elements representing the initial state 
probability distribution with:
πj = Pr{probability that the initial state is si} = 

Pr(X1=si) ∀i

Can avoid this by creating a special start state s0
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Markov Chain: An Example
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Markov Process & Language Models
• Bayes formula (chain rule):

P(W) = P(w1,w2,...,wT) = Pi=1..T p(wi|w1,w2,..,wi-n+1,..,wi-1)
• n-gram language models:

Markov process (chain) of the order n-1:
P(W) = P(w1,w2,...,wT) = Π i=1..T p(wi|wi-n+1,wi-n+2,..,wi-1)

Using just one distribution (Ex.: trigram model: p(wi|wi-2,wi-1)):
Positions:    1    2    3      4      5 6      7         8        9  10 11  12   
13    14 15 16

Words:     My car  broke down , and within hours  Bob ’s car  broke 
down , too  .

p(,|broke down) =  p(w5|w3,w4)) = p(w14|w12,w13)
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Another Example with a Markov Chain
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Probability of a Sequence of States

P(t, a, p, p) = 1.0 × 0.3 × 0.4 × 1.0 = 0.12
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Hidden Markov Models (HMMs)
• Sometimes it is not possible to know precisely which 

states the model passes through; all we can do is to 
observe some phenomena that occurs when in that state 
with some probability distribution

• An HMM is an appropriate model for cases when you 
don’t know the state sequence that the model passes 
through, but only some probabilistic function of it.  For 
example:
– Word recognition (discrete utterance or within continuous speech) 
– Phoneme recognition
– Part-of-Speech Tagging
– Linear Interpolation
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What is an HMM?

• Green circles are hidden states with its status 
dependent only on the previous state
• Purple circles are observed events with their 
observations depend only of their emitting states
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HMM: An Occasionally Dishonest Casino

• Assume: A casino switches 
occasionally to a biased dice to 
increase winning odds !!

• Can we model it with HMM ?
• How do we prove it cheats ?
• Can we estimate the HMM ?
• How many samples needed ?
• Which dice used at what time?

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6:   1/2

Fair Biased

0.05

0.95 0.9

0.1
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Estimation: More vs. Less Data

1: 0.19
2: 0.19
3: 0.23
4: 0.08
5: 0.23
6: 0.08

1: 0.07
2: 0.10
3: 0.10
4: 0.17
5: 0.05
6: 0.52

0.27

0.73

0.29

0.71

1: 0.17
2: 0.17
3: 0.17
4: 0.15
5: 0.18
6: 0.16

1: 0.10
2: 0.11
3: 0.10
4: 0.11
5: 0.10
6: 0.48

0.07

0.93 0.88

0.12

Estimates with 300 rolls Estimates with 30000 rolls
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Observations and Hidden States
• HMM is also called a probabilistic 

function of a Markov chain
– State transition follows a Markov 

chain
– In each state, it generates 

observation symbols based on a 
probability function. Each state 
has its own probability function

– HMM is a doubly embedded 
stochastic process

• In HMM,
– State is not directly observable 

(hidden states)
– Only observe observation 

symbols generated from states

S =S = ω1, ω4, ω2, ω2, ω1, ω4 (hidden)(hidden)

O =O = v4, v1,  v1, v4,  v2, v3 (observed)(observed)
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An HMM Example: Urn & Ball

…

Urn 1 Urn NUrn N-1Urn 2

Pr(RED)  = b1(1)

Pr(BLE)  = b1(2)

Pr(GRN) = b1(3)

…

Pr(RED)  = b2(1)

Pr(BLE)  = b2(2)

Pr(GRN) = b2(3)

…

Pr(RED)  = bN-1(1)

Pr(BLE)  = bN-1(2)

Pr(GRN) = bN-1(3)

…

Pr(RED)  = bN(1)

Pr(BLE)  = bN(2)

Pr(GRN) = bN(3)

…

Observation:  O = { GRN, GRN, BLE, RED, RED, … BLE}
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Elements of an HMM
• HMM (the most general case):

S five-tuple (S, K, Π, A, B), where:
S = {s1,s2,...,sN} is the set of states,
K = {k1,k2,...,kM} is the output alphabet,
Π = {πi} , i  ∈ S,
A = {aij},  i,j ∈ S,
B = {bijk},  i,j ∈ S, k ∈ K (arc emission)
B={bik} i ∈ S, k ∈ K (state emission)

• State Sequence: X=(x1, x2, .., xT+1), xt : S →{1,2,…, N}
• Observation Sequence: O=(o1, .., oT), ot ∈ K
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HMM as a Generating Model
• Given an HMM, denoted as                        and an 

observation sequence O={O1,O2, …, OT}
• The HMM can be viewed as a generator to produce O

as:
1. Choose an initial state q1=Si according to the initial probability 

distribution π
2. Set t=1
3. Choose an observation Ot according to the symbol observation 

probability distribution in state Si, i.e., bi(k)
4. Transit to a new state qt+1 =Sj according to the state transition 

probability distribution, i.e., aij
5. Set t=t+1, return to step 3 if t<T
6. Terminate the procedure

},,{ πBA=Λ
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Assumptions in HMM
•• Markov AssumptionMarkov Assumption:

– State transition follows a 1st-order Markov chain
– This assumption implies the duration in each state is a binomial

distribution: 

•• Output Independence AssumptionOutput Independence Assumption: the probability that a 
particular observation symbol is emitted from HMM at time 
t depends only on the current state st and is conditionally 
independent of the past and future observations

• The two assumptions limit the memory of an HMM and 
may lead to model deficiency. But they significantly simplify 
HMM computation, also greatly reduce the number of free 
parameters to be estimated in practice
– Some research works to relax these assumptions has been done in 

the literature to enhance HMM in modeling speech signals

)1()()( 1
jj

d
jjj aadp −= −



17 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813 Spring 2009

Types of HMMs (I)
• Different transition matrices:

– Ergodic HMM Topology

– Left-to-right HMM: states proceed from left to right
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Types of HMMs (II)
• Different observation symbols: discrete vs. continuous

– Discrete density HMM (DDHMM): observation is discrete, one of a
finite set. In discrete density HMM, observation function is a discrete 
probability density, i.e., a table.  In state j,

– Continuous density HMM (CDHMM): observation x is continuous in 
an observation space. In CDHMM, state observation density is a 
probability density function (p.d.f.). The common function forms:

• Multivariate Gaussian density

• Gaussian mixture density
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HMM for Data Modeling
• HMM is used as a powerful statistical model for sequential 

and temporal observation data
• HMM is theoretically (mathematically) sound; relatively 

simple learning and decoding algorithms exist
• HMM is widely used in pattern recognition, machine 

learning, etc.
– Speech recognition: modeling speech signals
– Statistical language processing: modeling language 

(word/semantics sequence)
– OCR (optimal character recognition): modeling 2-d character image 
– Gene finding: modeling DNA sequence
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Three Fundamental Problems in HMM
• How to use HMM to model sequential data ?

– The entire data sequence is viewed as one data sample OO
– The HMM is characterized by its parameters                      .

•• Learning ProblemLearning Problem: HMM parameters Λ must be estimated 
from a data sample set {O1,O2, …, OT}
– The HMM parameters are set so as to best explain known data

•• Evaluation ProblemEvaluation Problem: for an unknown data sample Ox, 
calculate the probability of the data sample given the model, 
p(Ox|Λ)

•• Decoding ProblemDecoding Problem: uncover the hidden information; for an 
observation sequence O={o1,o2,…,oT}, decode a best state 
sequence S={q1,q2,…,qT} which is optimal in explaining O

},,{ πBA=Λ
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HMM Formalism

{S, K, P, A, B} 
Π = {pi} are the initial state probabilities
A = {aij} are the state transition probabilities
B = {bik} are the observation probabilities
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Example of an Arc Emit HMM
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HMM Properties
• N states in the model: a state has some measurable, 

distinctive behaviors
• At clock time t, you make a state transition (to a different 

state or back to the same state), based on a transition 
probability distribution that depends on the current state 
(i.e., the one you're in before making the transition)

• After each transition, you output an observation output 
symbol according to a probability density distribution 
which depends on the current state or the current arc

Goal: From the observations, determine what model generated the 
output, e.g., in word recognition with a different HMM for each word, 
the goal is to choose the one that best fits the input word (based on 
state transitions and output observations)
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Example HMM
• N states corresponding to urns: q1, q2, …,qN

• M colors for balls found in urns
• B: N x M matrix; for each urn, there is a 

probability density function for each color.
– bij={COLOR=zj | URN = qi)

• A: N x N matrix; transition probability 
distribution (between urns)

• ∏: N vector; initial sate probability distribution 
(where do we start?)
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An HMM Evolution Example
• Process:

– According to π, pick a state qi.  Select a ball from urn i (state 
is hidden)

– Observe the color (observable) 
– Replace the ball
– According to A, transition to the next urn from which to pick a 

ball (state is hidden)
• Design: Choose N and M.  Specify a model Λ = (A, B, 

∏) from the training data.  Adjust the model 
parameters to maximize P(O| Λ)

• Use: Given O and Λ = (A, B, ∏), what is P(O| Λ)?  If 
we compute P(O| Λ) for all models Λ, then we can 
determine which model most likely generated O
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Simulating a Markov Process
t:= 1;
Start in state si with probability πi (i.e., X1=i)
Forever do

Move from state si to state sj with probability 
aij (i.e., Xt+1=j)

Emit observation symbol ot = k with probability 
bijk

t:= t+1
End
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Why Use Hidden Markov Models?
• HMMs are useful when one can think of 

underlying events probabilistically generating 
surface events. Example: PoS tagging

• HMMs can be efficiently trained using the EM 
Algorithm

• Another example where HMMs are useful is in 
generating parameters for linear interpolation of 
n-gram models

• Assuming that some set of data was generated 
by a HMM, and then an HMM is useful for 
calculating the probabilities for possible 
underlying state sequences
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Fundamental Questions for HMMs
• Given a model Λ =(A, B, Π), how do we 

efficiently compute how likely a certain 
observation is, that is, P(O| Λ) ?

• Given an observation sequence O and a model 
Λ, how do we choose a state sequence (X1, …, 
X T+1) that best explains the observations?

• Given an observation sequence O, and a space 
of possible models found by varying the model 
parameters Λ = (A, B, π), how do we find the 
model that best explains the observed data?
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Probability of an Observation
• Given the observation sequence O=(o1, …, 

oT) and a model, Λ = (A, B, ∏ ), we wish to 
know how to efficiently compute P(O| Λ)

• For any state sequence, S=(q1, …, qT+1), we 
find: P(O| Λ)=ΣS P(O | S, Λ) P(S | Λ) which is 
simply the probability of an observation 
sequence given the model

• Direct evaluation of this expression is 
extremely inefficient; however, there are 
dynamic programming methods that compute 
it quite efficiently
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the probability of the observation sequence

Probability of an Observation
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Probability of an Observation (Cont.)

TT oqoqoq bbbSOP ...),|(
2211

=μ

oTo1 otot-1 ot+1

q1 qt+1 qTqtqt-1

TT qqqqqqq aaaSP
132211

...)|(
−

= πμ
)|(),|()|,( μμμ SPSOPSOP =

∑=
S

SPSOPOP )|(),|()|( μμμ



32 Center of Signal and Image Processing
Georgia Institute of Technology

Probability of an Observation with 
an Arc Emit HMM
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Making Computation Efficient
• To avoid computational complexity, use dynamic 

programming or memorization techniques due to trellis 
structure of the problem

• Use an array of states versus time to compute the 
probability of being at each state at time t+1 in terms 
of the probabilities for being in each state at  t

• A trellis can record the probability of all initial subpaths 
of the HMM that end in a certain state at a certain 
time. The probability of longer subpaths can then be 
worked out in terms of the shorter subpaths

• A forward probability, αi(t)= P(o1o2…o t-1, Xt=i| μ) is 
stored at (si, t) in the trellis and expresses the total 
probability of ending up in state si at time t



34 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813 Spring 2009

The Trellis Structure
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)|,...()( 1 μα iqooPt tti ==

Forward Procedure

oTo1 otot-1 ot+1

q1 qt+1 qTqtqt-1

• Special structure gives us an efficient solution using 
dynamic programming

• Intuition: Probability of the first t observations is the 
same for all possible t +1 length state sequences (so 
don’t recompute it!)

• Define:
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The Forward Algorithm
• Forward variables are calculated as follows:

– Initialization: αi(1)= πi , 1≤ i ≤ N
– Induction: αj(t+1)=Σi=1, N αi(t)aijbijot, 1≤ t≤T, 1≤ j≤N
– Total: P(O|μ)= Σi=1,N αi(T+1)

• This algorithm requires 2N2T multiplications 
(much less than the direct method which takes 
(2T+1)NT+1
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The Backward Procedure
• We could also compute these probabilities by 

working backward through time
• The backward procedure computes backward 

variables which are the total probability of 
seeing the rest of the observation sequence 
given that we were in state si at time t

• βi(t) = P(ot…oT | qt = i, Λ) is a backward 
variable (probability)

• Backward variables are useful for the 
problem of parameter reestimation
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The Backward Algorithm
• Backward variables can be calculated 

working backward through the treillis as 
follows:
– Initialization: βi(T+1) = 1, 1≤ i ≤ N
– Induction: βi(t) =Σj=1,N aijbijotβj(t+1), 1≤ t ≤T, 1≤ i ≤ N
– Total: P(O|μ)=Σi=1, N πiβi(1)

• Backward variables can also be combined 
with forward variables:

 P(O|μ) = Σi=1,N αi(t)βi(t), 1≤ t ≤ T+1
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Finding the Best State Sequence
• One method consists of optimizing on the states 

individually
• For each t, 1≤ t≤ T+1, we would like to find Xt that 

maximizes P(Xt|O, Λ)
• Let γi(t) = P(Xt = i |O, Λ) = P(Xt = i, O| Λ)/P(O| Λ) = 

(αi(t)βi(t))/Σj=1,N αj(t)βj(t)
• The individually most likely state is

Xt =argmax1≤i≤N γi(t), 1≤ t≤ T+1
• This quantity maximizes the expected number of states 

that will be guessed correctly. However, it may yield a 
quite unlikely state sequence

^
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The Viterbi Algorithm
• The Viterbi algorithm efficiently computes the most 

likely state sequence.
• To find the most likely complete path compute: 

argmaxS P(S|O, Λ)
• To do this, it is sufficient to maximize for a fixed O: 

argmaxS P(S,O| Λ)
• We define                                                       

δj(t) = maxq1..qt-1 P(q1…qt-1, o1..ot-1, qt=j|μ)  with ψj(t) 
records the node of the incoming arc that led to this 
most probable path
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oTo1 otot-1 ot+1

Viterbi Algorithm Properties (Cont.)
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Finally: The Viterbi Algorithm
The Viterbi Algorithm works as follows:
• Initialization: δj(1) = πj, 1≤ j≤ N
• Induction: δj(t+1) =  max1≤ i≤N δi(t)aijbijot, 1≤ j≤ N
• Store backtrace:

ψj(t+1) = argmax1≤ i≤N δj(t)aij bijot, 1≤ j≤ N

• Termination and path readout: next page
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Compute the most 
likely state sequence 
by working backwards
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HMM Parameter Estimation
• Given a certain collection of observation sequences, 

we want to find the values of the model parameters Λ
=(A, B, π) which best explain the observed data

• Using maximum likelihood estimation (MLE) to find 
values to maximize P(O| Λ),  i.e. argmaxμ P(Otraining| μ)

• There is no known analytic method to choose μ to 
maximize P(O| Λ). However, we can locally maximize it 
by an iterative hill-climbing algorithm known as Baum-
Welch or forward-backward algorithm (this is a special 
case of the EM algorithm which is used in many miss 
data problems in statistical inference)
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The Forward-Backward Algorithm
• We don’t know what the model is, but we can 

work out the probability of the observation 
sequence using some (perhaps randomly 
chosen) model 

• Looking at that calculation, we can see which 
state transitions and symbol emissions were 
probably used the most 

• By increasing the probability of those, we can 
choose a revised model which gives a higher 
probability to the observation sequence 
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Parameter Estimation

• Given an observation sequence, find the model that 
is most likely to produce that sequence

• No analytic method
• Given a model and training sequences, update the 

model parameters to better fit the observations
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Some Definitions
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The Probability of Traversing an Arc

si sj

aij bijot

……

t t+1t-1 t+2
αi(t) βj(t+1)
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More Definitions
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1

t
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t
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• The expected number of transitions from state i in O:

• The expected number of transitions from state i to j in O
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Reestimation Procedure
• Begin with model μ perhaps selected at 

random
• Run O through the current model to estimate 

the expectations of each model parameter
• Change model to maximize the values of the 

paths that are used a lot while respecting 
stochastic constraints

• Repeat this process (hoping to converge on 
optimal values for the model parameters μ)
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The Reestimation Formula

)1(ˆ ii γπ =The expected frequency in state i at time t=1:
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Reestimation Formula (Cont.)
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Parameter Estimation: Summary 1
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Parameter Estimation: Summary 2
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Baum-Welch Algorithm: DDHMM (I)

E-step:
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);();();(

),|,Pr()(ln

),|,Pr(ln),|Pr(ln

),|()(lnln)(lnln

),|()|,(ln),|()|,(ln

,,|)|,,,,(ln);(

)()()(

)(

1 1 1 1

1 1 1

)(

2
1

1

)(

1
1

)(

1 22
1

1

)(

1

)(

1

)(
111}{

)(

1

111

1

nnn

n
l

L

l

N

i

M

m

T

t
mtiltMi

L

l

N

i

N

j

n
l

T

t
jltiltij

L

l

n
l

N

i
ili

n
ll

L

l ss

T

t
ts

T

t
sslss

L

l S

n
llll

L

l

n
ll

SS

L

l
ll

n
LLLS

n

BBQAAQQ

Ovossvb

OssssaOss

OSpobaob

OSpSOpOSpSOp

OOSSOOpEQ

l

l

llTl

l

t

l

ttll

lL

l

++=

Λ==⋅+

Λ==⋅+Λ=⋅=

Λ⋅⎥
⎦

⎤
⎢
⎣

⎡
++⋅+=

Λ⋅Λ=Λ⋅⎥
⎦

⎤
⎢
⎣

⎡
Λ=

ΛΛ=ΛΛ

∑∑∑∑

∑∑∑∑∑∑

∑ ∑ ∑∑

∑∑∏∑ ∑

= = = =

= = = =
−

= =

= ==

===

−

ππ

π

π
L

L

LLL



61 Center of Signal and Image Processing
Georgia Institute of Technology

ECE8813 Spring 2009

Baum-Welch Algorithm: DDHMM (II)
M-step:
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Baum-Welch Algorithm: DDHMM (III)

How to calculate the 
posteriori probabilities of 
traversing an arc going 
from state i to j at time t?
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Baum-Welch Algorithm: DDHMM (IV)
Define state occupancy probability:
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Baum-Welch Algorithm: DDHMM (V)
Final results: one iteration, from
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Baum-Welch: Gaussian Mixture CDHMM (I)
• Treat both state sequence Sl and mixture component label 

sequence ll as missing data.
• Only B estimation is different.
• E-step:

• M-step:
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Baum-Welch: Gaussian Mixture CDHMM (II)
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HMM Learning: Summary
• For an HMM model                       and a training data 

set D = {O1, O2, …, OL},
1. Initialization: 
2. n=0 ;
3. For each observation sequence Ol (l=1,2,…,L):

• Calculate            and            based on        
• Calculate all other posteriori probabilities
• Accumulate a numerator and a denominator for each HMM 

parameter
4. HMM parameters update:               the numerators divided by 

the denominators

5. n=n+1; Go to step 2 until convergence
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HMM Applications

• Parameters for interpolated n-gram models
• Part-of-speech tagging
• Speech recognition
• Machine translation
• Many others
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Summary
• Today’s and next classes

– Hidden Markov Models
• Note

– Project summary due on 2/24, let’s start our discussion
– Project plan finalize on 3/3 (presentation on 4/16 ???)
– Lab3 assigned on 2/12 and due on 2/26
– Midterm on 3/12 (???)
– Final at 8am on 4/27 (shall we try a take-home ???)

• Reading Assignments
– Manning and Schutze, Chapter 9
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